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Reinforcement learning

action 𝑎𝑡

state 𝑠𝑡
reward 𝑟𝑡

agent environment

https://www.forbes.com/

Nath*, Mathis* et al. 

Nature Protocols 2019

M. Mathis Lab

https://www.youtube.com/watch?v=8vNxjwt2AqY

enormous gap

https://www.symphonikerhamburg.de/konzerte/martha-argerich-70



▪ Exploration (minimal coverage in last lecture) 

▪ Baked in reward functions (which we don’t know & discuss)

▪ Internal models

▪ Inductive biases (innate architecture)

▪ Curriculum learning 

▪ Deliberate practice 

▪ Using language 

▪ …. 

What is missing? 



More efficient 
exploration



Exploration & play

https://www.youtube.com/watch?v=8vNxjwt2AqY



Reminder: Latent time-correlated exploration

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS /arxiv 2023

State-Dependent Exploration



Lattice learns more energy 
efficient solutions

Chiappa, Marin Vargas, Huang, Mathis, NeurIPS /arxiv 2023



Another recent example for 
better exploration



Internal models
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Wolpert, Ghahramani, Jordan, Science 1995



Sensory feedback from 

self-generated movements
Sensory 

prediction 

error

Prediction of

sensory feedback

State estimator

Sensory feedback 

from environment

Motor command
Decision maker

/ Controller
Internal model

“= 0” (memory hyp.) “= 0” (updating hyp.)

Did inactivation 
block acquisition? 

Or block expression
of an adapted

motor command?

Perturbation block

1

2

Somatosensory cortex updates the internal model

Slide, courtesy M.W. Mathis M.W. Mathis, A. Mathis, N. Uchida, Neuron 2017



S1 inactivation after adaptation: 

S1 does not exclusively house the model of the perturbation 
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M.W. Mathis, A. Mathis, N. Uchida, Neuron 2017Slide, courtesy M.W. Mathis



What is missing in AI?
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https://ai.facebook.com/blog/yann-lecun-advances-in-ai-research/



Another motor adaptation example



How do ants estimate the 
distance?

Wittlinger, Wehner & Wolf, Science 2006



How can we control them all?

−0.5 −0.3 −0.1 0.1 0.3 0.5

Sigma Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Morphology perturbation space

Perturbations:

▪ Torso size

▪ Limb length

▪ Limb size

Every episode begins with a 
different perturbation of the 
base morphology

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Contextual Markov Decision 
Process

action 𝑎𝑡

state 𝑠𝑡
reward 𝑟𝑡

agent

environment

𝑠𝑡

𝑠𝑡+1

𝑠𝑡+2

𝑎𝑡

𝑎𝑡+1

𝑎𝑡+2

𝜋 𝑎𝑡 𝑠𝑡

𝜋 𝑎𝑡+1 𝑠𝑡+1

𝜋 𝑎𝑡+2 𝑠𝑡+2

𝑝 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡

𝑝 𝑠𝑡+2 𝑠𝑡+1, 𝑎𝑡+1



Baseline: multi-layer perceptron (MLP) 
policy with SAC

𝒔𝑡
Proprioceptive 

state

MLP
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Action

𝜎 = 0.1



Baseline: MLP policy

𝒔𝑡
Proprioceptive 

state

MLP
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Baseline: MLP policy
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state
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Action
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Baseline: MLP policy

𝒔𝑡
Proprioceptive 

state

MLP
𝒂𝑡

Action



Morphology encoding policy (aka 
oracle)

MLP𝒆𝑡
Raw perturbation

𝒛𝑡
Morphology 

encoding

𝒔𝑡
Proprioceptive 

state

MLP
𝒂𝑡

Action

Encoding

Base



Morphology encoding policy

𝜎 = 0.1 𝜎 = 0.3 𝜎 = 0.5

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Morphology encoding from 
experience

MLP𝒆
Raw perturbation

𝒛
Morphology 

encoding

𝒔𝑡
Proprioceptive 

state

MLP
𝒂𝑡

Action

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 



Morphology encoding from 
experience

TCN𝒔𝑡−𝑛, 𝒂𝑡−𝑛, … , 𝒔𝑡−1, 𝒂𝑡−1
Transition history

෤𝒛𝑡
Morphology 

encoding

𝒔𝑡
Proprioceptive 

state

MLP
𝒂𝑡

Action

Adaptation module

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 



Morphology encoding from 
experience

rollout

𝒔0, 𝒂0, … , 𝒔𝑇−1, 𝒂𝑇−1,𝒔𝑇
𝒛

encoding

𝑀𝑆𝐸 ෤𝒛, 𝒛

Kumar, A., Fu, Z., Pathak, D., & Malik, J, “RMA: Rapid Motor Adaptation for Legged Robots, 2021 

agent

Morphology encoder



Learning with a perturbed body
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Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Is the 2-step training 
necessary?

TCN𝒔𝑡−𝑛, 𝒂𝑡−𝑛, … , 𝒔𝑡−1, 𝒂𝑡−1
Transition history

෤𝒛𝑡
Morphology 

encoding

𝒔𝑡
Proprioceptive 

state

MLP
𝒂𝑡

Action



Training the CNN encoder 
end-to-end

encoding 0.1

encoding 0.3

encoding 0.5



Distributed sensing and 
control

▪ Independent low-level 
processing

▪ High-level proprioceptive 
input integration

▪ Distributed control



DMAP’s brain inspired 
architecture

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



DMAP performance comparison

Sigma = 0.1



DMAP performance comparison

Sigma = 0.3



DMAP performance comparison

Sigma = 0.5



Results also hold across different 
morphologies

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Analysis of the learned attention 
weights



▪ We discussed a brain-inspired inductive bias (DMAP) that implicitly 
can deal with changing bodies (better than other policies)

▪ Check out Tony Zador’s Perspective in Nat. Comm 2019

Inductive biases



Using 
Language



Recent example of a illustrating the power of 

natural language instructions 

For (mostly) “cognitive tasks.

Caption: a,b, Illustrations of example trials as they might appear in a 
laboratory setting. The trial is instructed, then stimuli are presented with 
different angles and strengths of contrast. The agent must then respond 
with the proper angle during the response period. a, An example AntiDM
trial where the agent must respond to the angle presented with the least 
intensity. b, An example COMP1 trial where the agent must respond to 
the first angle if it is presented with higher intensity than the second angle 
otherwise repress response. c, Diagram of model inputs and outputs. 
Sensory inputs (fixation unit, modality 1, modality 2) are shown in red and 
model outputs (fixation output, motor output) are shown in green. 
Models also receive a rule vector (blue) or the embedding that results 
from passing task instructions through a pretrained language model 
(gray). A list of models tested is provided in the inset.



Natural language instructions induce 
compositional generalization in networks of 
neurons

Riveland & Pouget, Nature Neuro 2024



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA 
CODING LARGE LANGUAGE MODELS 

https://eureka-research.github.io Ma et al. ICLR 2024



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA 
CODING LARGE LANGUAGE MODELS 

https://eureka-research.github.io Ma et al. ICLR 2024



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA 
CODING LARGE LANGUAGE MODELS 

https://eureka-research.github.io Ma et al. ICLR 2024



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA 
CODING LARGE LANGUAGE MODELS 

https://eureka-research.github.io Ma et al. ICLR 2024

Human: expert written reward functions



Ma et al. ICLR 2024

Check out some videos: https://eureka-research.github.io



Reminder: Object manipulation learning 
curves

Learning iterations
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Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023

How can one reach a higher fraction?



How many muscle 
states are there? 

q^600 
(for 600 muscles assuming q states per muscle)



Similarly, there are 
many kinematic 
states



Boading balls: an example skill

Source: reddit



How do humans control the hand?

Todorov, & Ghahramani, 
Annual International Conference of the IEEE Engineering in Medicine and Biology 2004

Classic result: Bernstein, Bizzi, D’Avella, …  



What about other object-manipulation tasks? 

Todorov, & Ghahramani, 
Annual International Conference of the IEEE Engineering in Medicine and Biology 2004



Reminder:
Muscle 
synergies as 
principle for 
motor 
control

Torricelli et al., Emerging Therapies in Neurorehabilitation 2015



Reminder: Object manipulation learning 
curves

Learning iterations
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Chiappa, Marin Vargas, Huang, Mathis, NeurIPS 2023

How can one reach a higher fraction?



Curriculum 
learning

Wang, Chen, Zhu IEEE TPAMI, 2021



Wang, Chen, Zhu IEEE TPAMI, 2021



MyoChallenge: Baoding Balls

The balls’ initial positions, target trajectories, 

Caggiano et al. Proceedings of the NeurIPS 2022 Competitions Track, PMLR 220:233-250

Inaugural NeurIPS Challenge 2022

Curriculum Phase 1 Phase 2

None 41% 0%

Location only 42% 4%

SOTA RL:

q^39



Curriculum learning in biology

Science, 2006



Inspiration from coaching: part-to-
whole practice

States of a dynamic skill

Recommended 
strategy:

Learning static movement motifs first

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024



Curriculum learning

▪ Static to Dynamic Stability (SDS)

• SDS creates stability at desired states before
learning a policy that reaches them

• A curriculum gradually transforms static stability into 
dynamic movement motifs

Static stability

Final task

Dynamic stability

Caggiano et al. Proceedings of the NeurIPS 2022 Competitions Track, PMLR 220:233-250

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024



Curriculum learning 65

▪ Going gradually from static to dynamic stability allows to learn a complex motor skill (100% performance) for Phase I.

▪ Learning without a curriculum fails (41% performance)

▪ Going directly from static stability to the final task fails (42% performance)

▪ Standard speed curriculum fails (45% performance)



Curriculum Phase 1 Phase 2

None 41% 0%

Location only 42% 4%

Speed only 45% 0%

SDS (ours) 100% 55%

Caggiano et al. Proceedings of the NeurIPS 2022 Competitions Track, PMLR 220:233-250

Team Performance

SDS (ours) 55%

Al4Muscles 41%

IARAI-JKU 15%

pkumarl 14%

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024



Fitts Posner’s 1967 
model of skill learning

Furley & Memmert, International Review of Sport and Exercise Psychology 2010

Policies can get trapped in local minima

PPO, … 

Alberto Chiappa

Nisheet Patel

Pablo Tano



Deliberate practice

Du, Krakauer, Haith Trends in Cog Sci 2022



Learning curve for our policy

ML terminology:

Sport science terminology: Part to whole practice Deliberate practice



How do humans achieve this task?

Todorov, & Ghahramani, 
Annual International Conference of the IEEE Engineering in Medicine and Biology 2004



SDS also discovers a low-dimensional 
control space

This notion of muscle/kinematic synergy is 

purely based on reconstruction error!



Physics engine allows causal 
experiments with “muscle synergies”



Signal reconstruction underestimates 
necessary DoF



Reorient task 

In MyoSuite/Mujoco

Late Lattice training performance

Chiappa et al. NeurIPS 2023



Control spaces are highly task-dependent 
& transfer poorly



Insights from analyzing SDS

❑ Muscle synergies have been proposed as a key 
principle for motor control 

❑ Yet, low-dimensional nature might be 
underestimated with existing techniques!

❑ For the hand -- learned muscle synergies are 
highly task-specific, and thus generalize poorly 

❑ This suggests that low-dimensional control is an 
emergent property (of the 
task/biomechanics/distributed circuits) rather than 
the mechanism of control (not a simplifying 
strategy)

❑ Neural networks are ideal for taming complex 
biomechanics 



Caggiano et al. Proceedings of the NeurIPS 2022 Competitions Track, PMLR 220:233-250

Curriculum learning

Marin Vargas, A., Chiappa, A. S., & Mathis, A

Winning solution of NeurIPS 2022 challenge Winning solution of NeurIPS 2023 challenge 

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. bioRxiv

All the best solutions in the NeurIPS challenge are based on curriculum learning… 

Solution in part based on: Lattice and Curriculum Learning:
Chiappa, Marin Vargas, Huang, Mathis NeurIPS. 2023



▪ Internal models

▪ Inductive biases (innate architecture)

▪ Better exploration 

▪ Baked in reward functions (which we don’t know…)

▪ Using language

▪ Curriculum learning (automatic curriculum discovery?)

▪ Deliberate practice 

▪ …. 

While we do not know their contributions or even the necessity of either one of 
those claims, I will show preliminary evidence for each to give you an idea. 

There is a lot of research to be done to close this gap & figure out what actually 
matters… 

What is missing? 



A counter point – the bitter lesson

Richard Sutton

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“The bitter lesson is based on the historical observations that 1) AI 
researchers have often tried to build knowledge into their agents, 2) this 
always helps in the short term, and is personally satisfying to the 
researcher, but 3) in the long run it plateaus and even inhibits further 
progress, and 4) breakthrough progress eventually arrives by an 
opposing approach based on scaling computation by search and 
learning. The eventual success is tinged with bitterness, and often incompletely 
digested, because it is success over a favored, human-centric approach.”



What might explain the gap between biological and artificial control?

▪ Internal models

▪ Inductive biases (innate architecture)

▪ Better exploration 

▪ Baked in reward functions (which we don’t know…)

▪ Using language

▪ Curriculum learning 

▪ Deliberate practice 

▪ …. 

▪ But beware of the bitter lesson! 

Take-home messages
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