

NX-414: Brain-like computation and intelligence

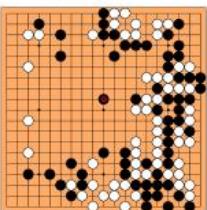
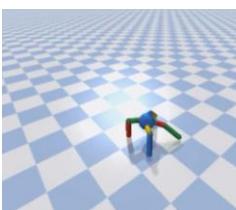
Alexander Mathis
alexander.mathis@epfl.ch

Lecture 13, May 21st

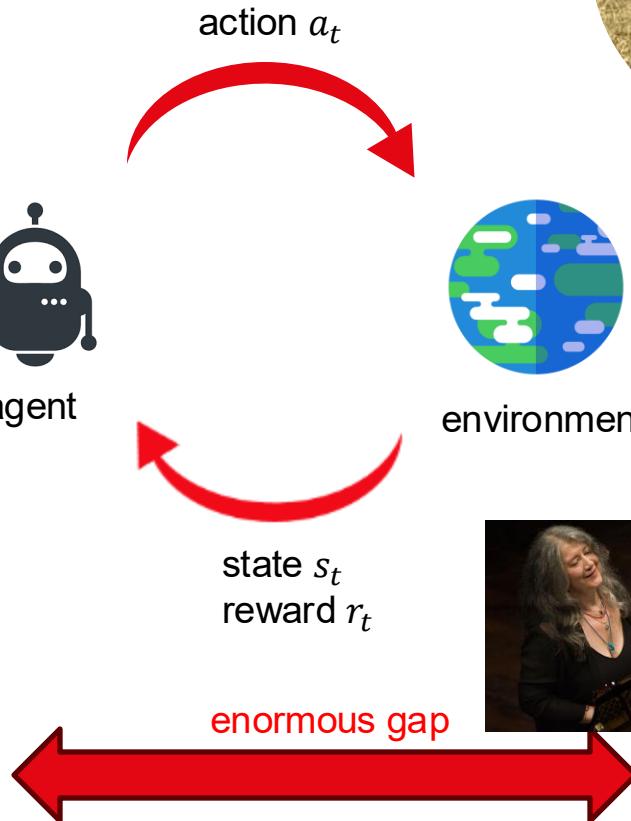
Reinforcement learning

Chess: 10^{120}

Go: 3^{361}



agent



M. Mathis Lab

<https://www.youtube.com/watch?v=8vNxjwt2AqY>

<https://www.symphonikerhamburg.de/konzerte/martha-argrich-70>

<https://www.forbes.com/>

What is missing?

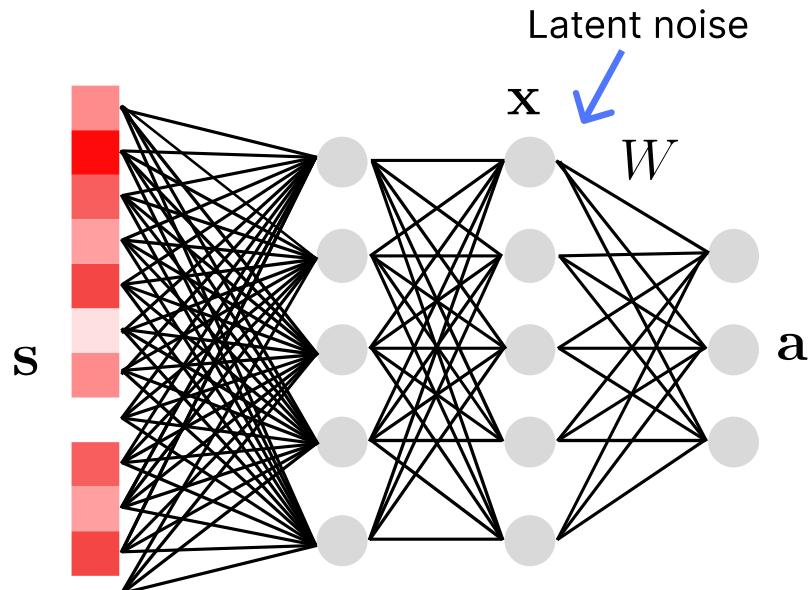
- Exploration (minimal coverage in last lecture)
- *Baked in reward functions (which we don't know & discuss)*
- Internal models
- Inductive biases (innate architecture)
- Curriculum learning
- Deliberate practice
- Using language
-

**More efficient
exploration**

Exploration & play

Reminder: Latent time-correlated exploration

LATTICE - LATent TIme-Correlated Exploration



Perturbation matrices

$$\begin{aligned}
 & N_a \quad P_a \quad (P_a)_{i,j} \sim \mathcal{N}(0, (S_a)_{i,j}) \\
 & N_x \quad P_x \quad (P_x)_{i,j} \sim \mathcal{N}(0, (S_x)_{i,j})
 \end{aligned}$$

LATTICE $a = (W + P_a + WP_x)x$

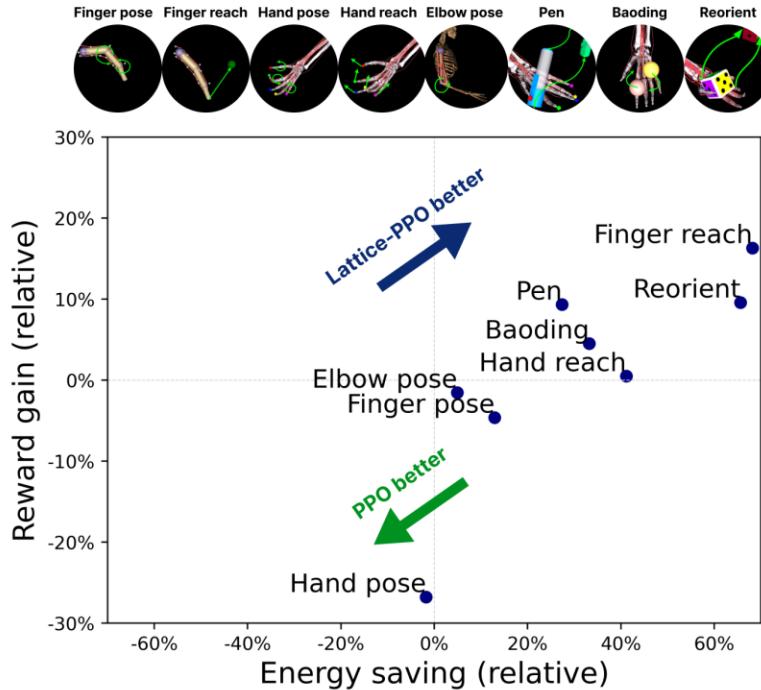
gSDE $a = (W + P_a)x$

Default $a = Wx + \epsilon$

Time

Time + Action

Lattice learns more energy efficient solutions



Another recent example for better exploration

Published as a conference paper at ICLR 2023

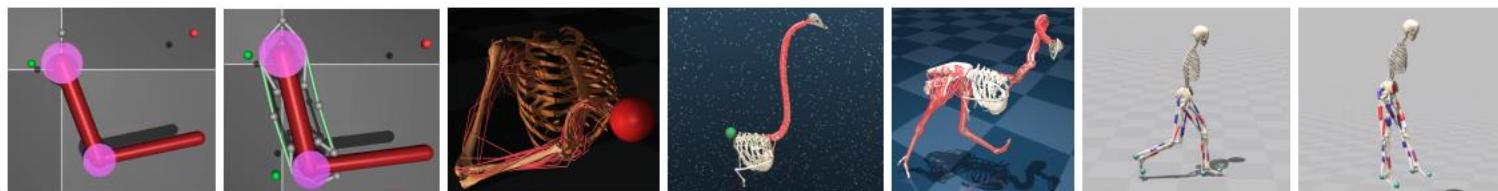
DEP-RL: EMBODIED EXPLORATION FOR REINFORCEMENT LEARNING IN OVERACTUATED AND MUSCULOSKELETAL SYSTEMS

Pierre Schumacher^{1,2} Daniel F.B. Haeusle^{2,3} Dieter Büchler¹ Syn Schmitt³ Georg Martius¹

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany

²Hertie-Institute for Clinical Brain Research, Tübingen, Germany

³Institute for Modelling and Simulation of Biomechanical Systems, Stuttgart, Germany



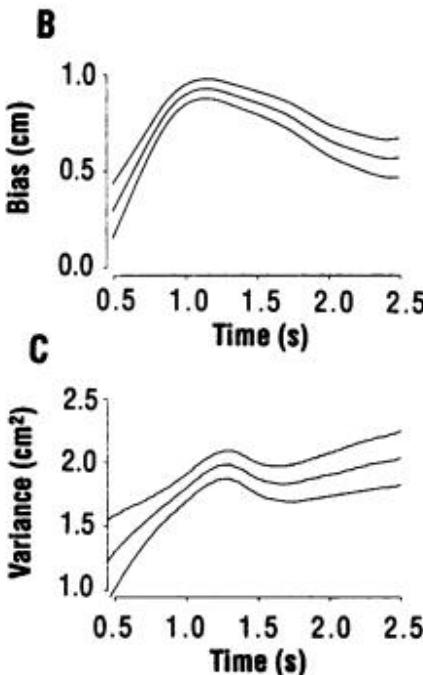
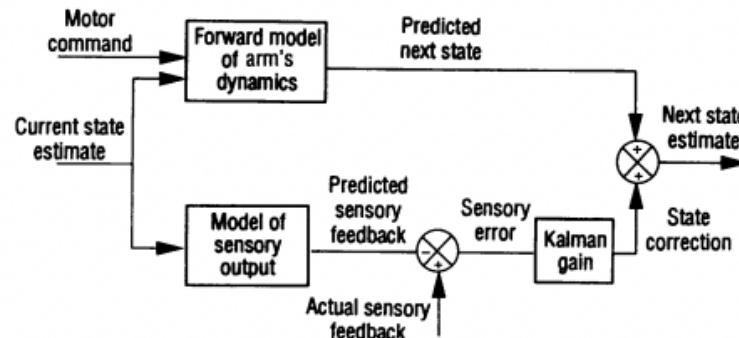
Internal models

An Internal Model for Sensorimotor Integration

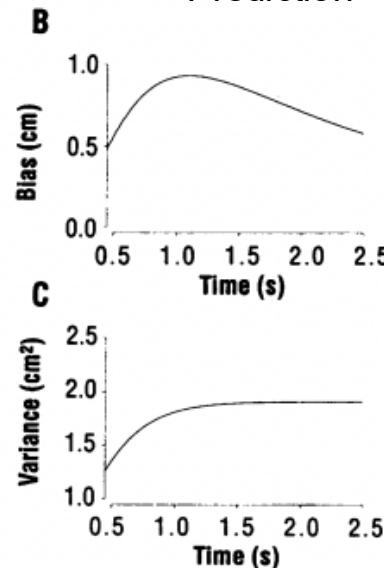
Daniel M. Wolpert,* Zoubin Ghahramani, Michael I. Jordan

On the basis of computational studies it has been proposed that the central nervous system internally simulates the dynamic behavior of the motor system in planning, control, and learning; the existence and use of such an internal model is still under debate. A sensorimotor integration task was investigated in which participants estimated the location of one of their hands at the end of movements made in the dark and under externally imposed forces. The temporal propagation of errors in this task was analyzed within the theoretical framework of optimal state estimation. These results provide direct support for the existence of an internal model.

Data



Prediction



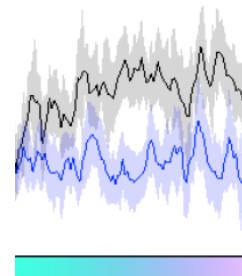
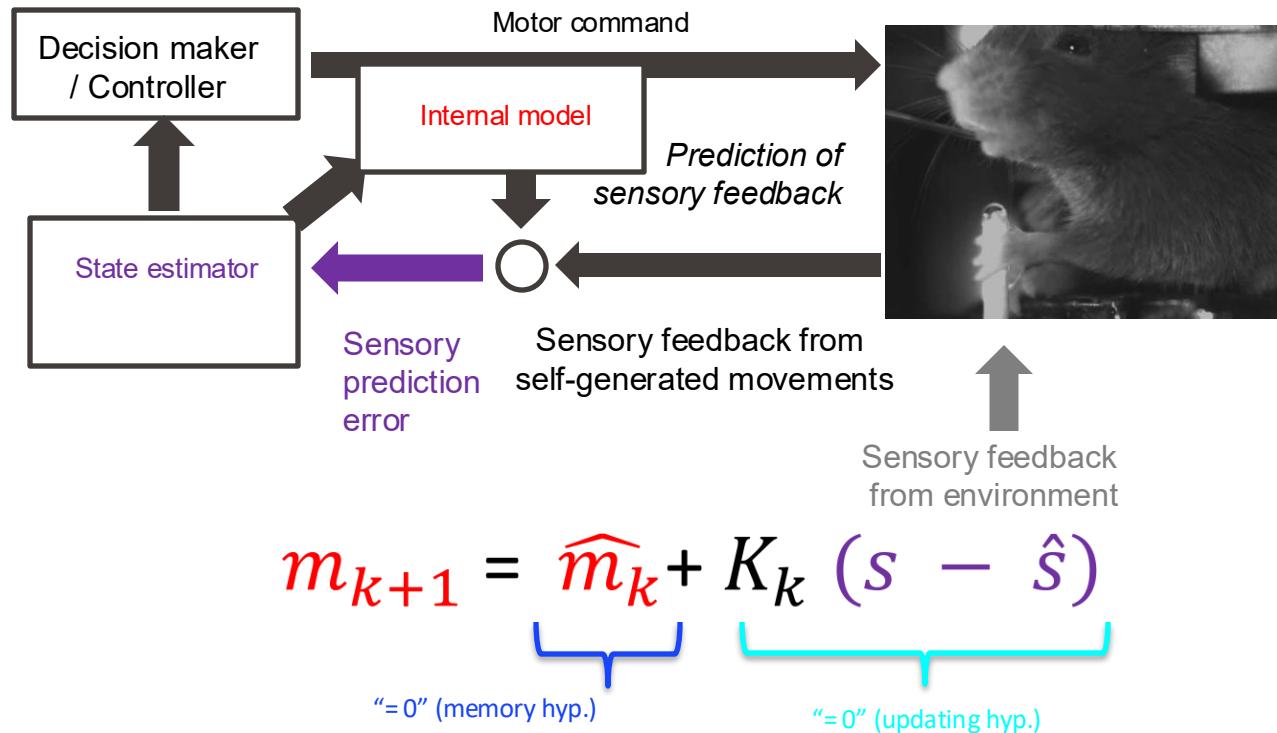
Somatosensory cortex updates the internal model

1

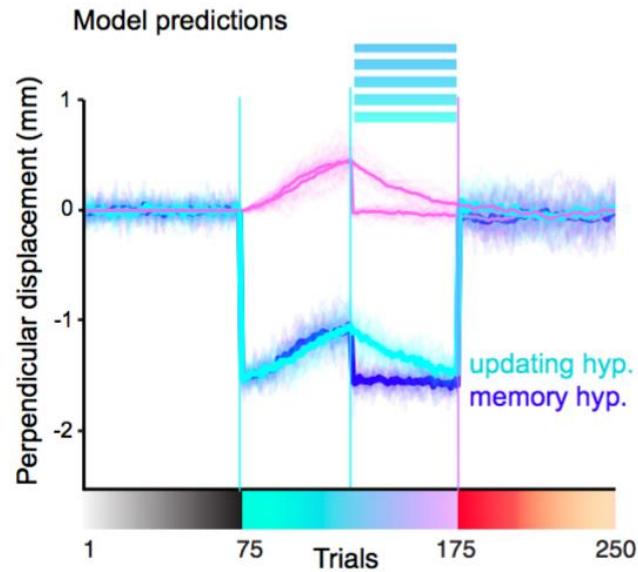
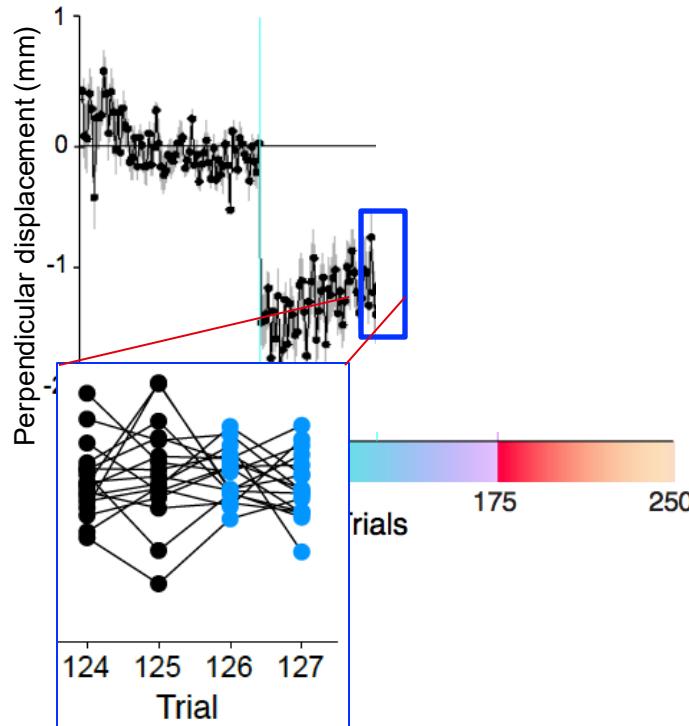
Did inactivation block **acquisition**?

2

Or block **expression** of an adapted motor command?

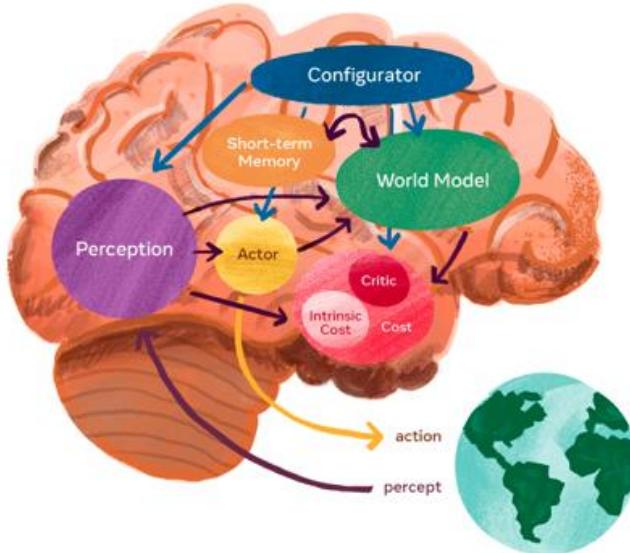


S1 inactivation after adaptation:
S1 does not exclusively house the model of the perturbation



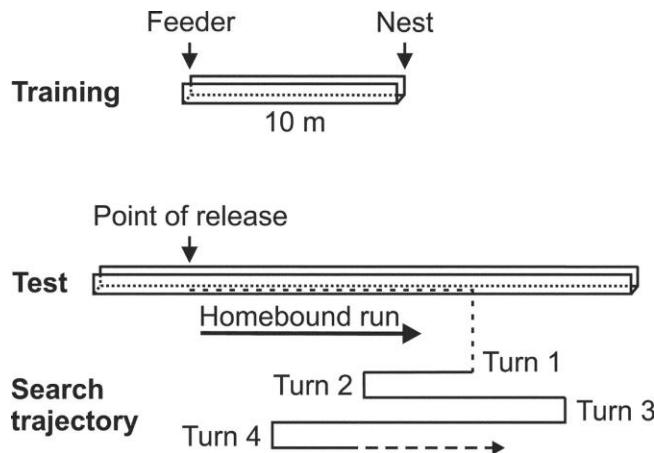
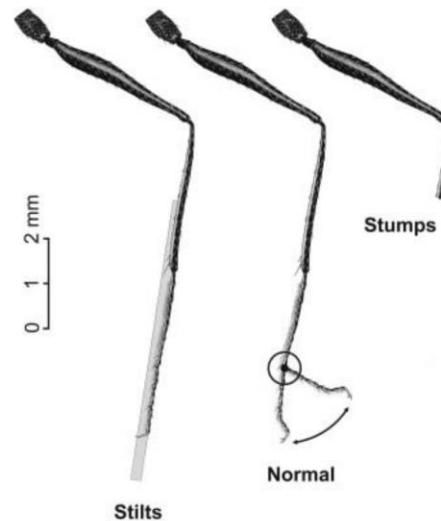
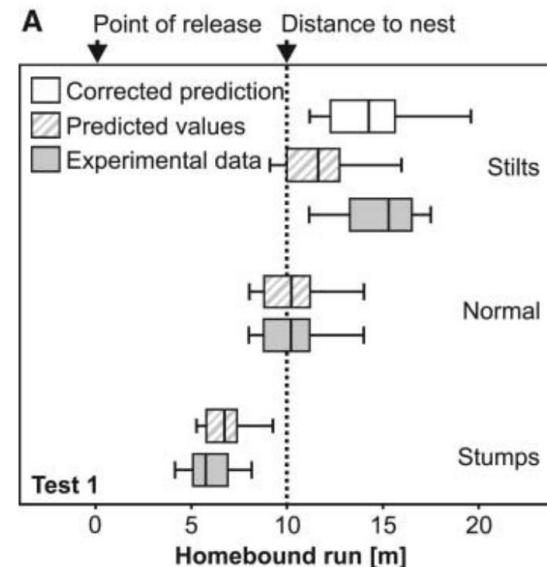
What is missing in AI?

∞ Meta AI

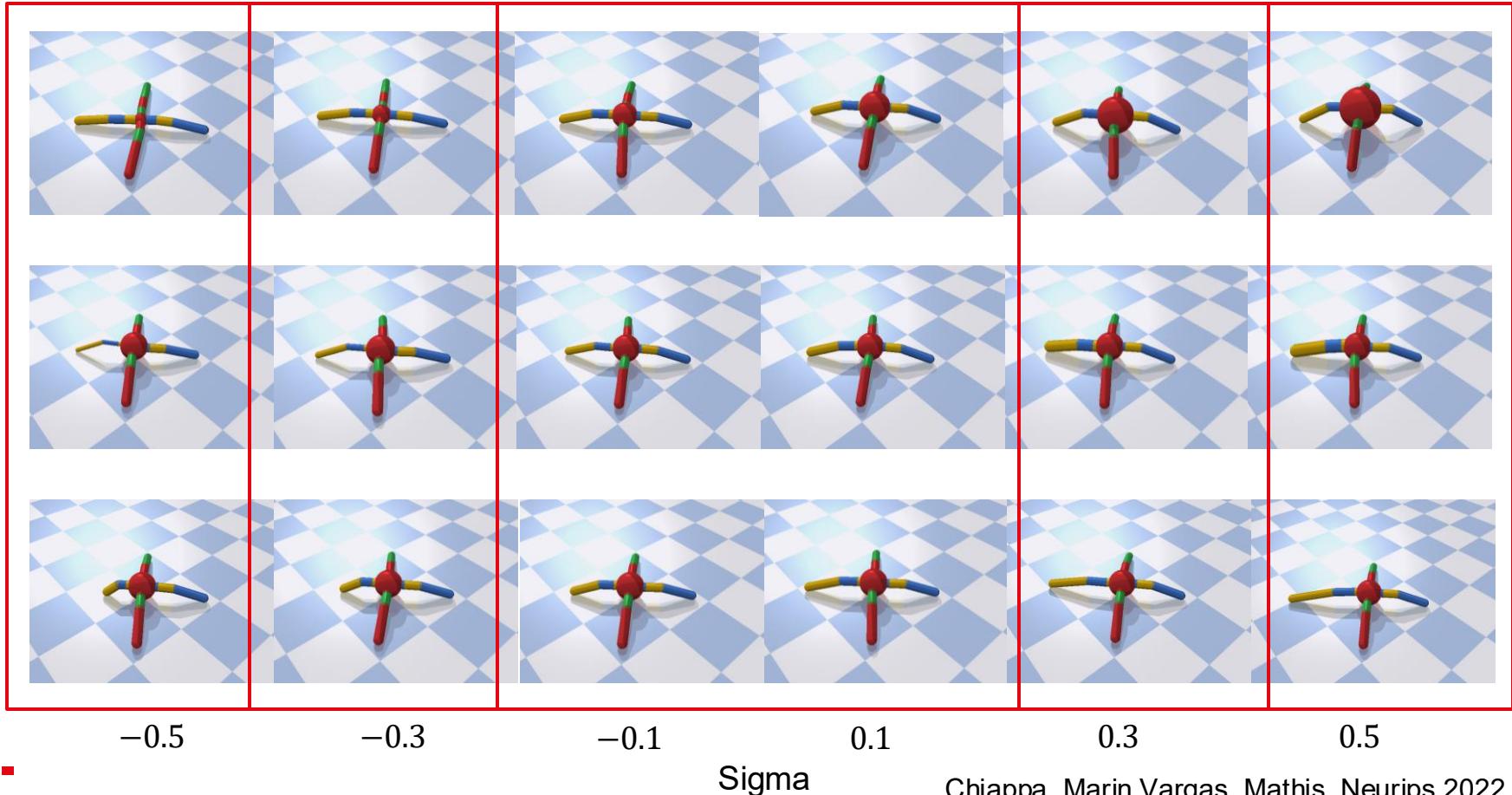


Another motor adaptation example

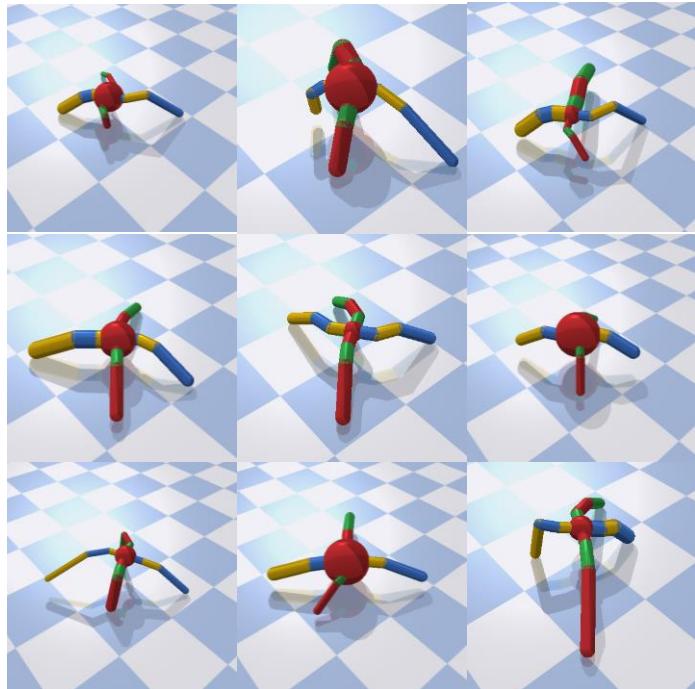
How do ants estimate the distance?



How can we control them all?



Morphology perturbation space

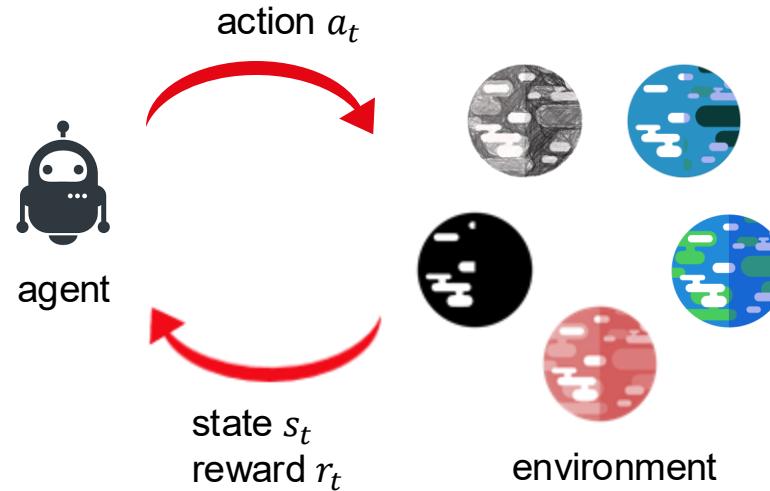
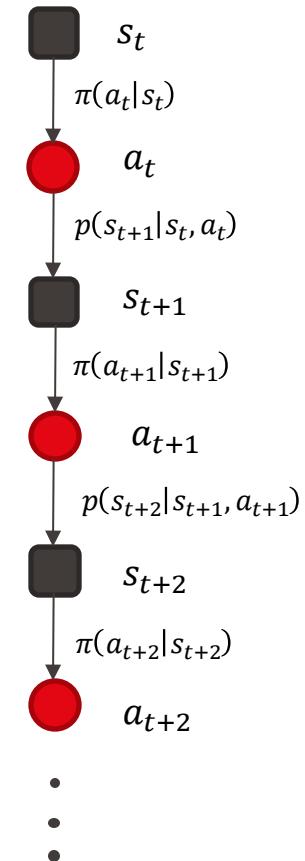


Perturbations:

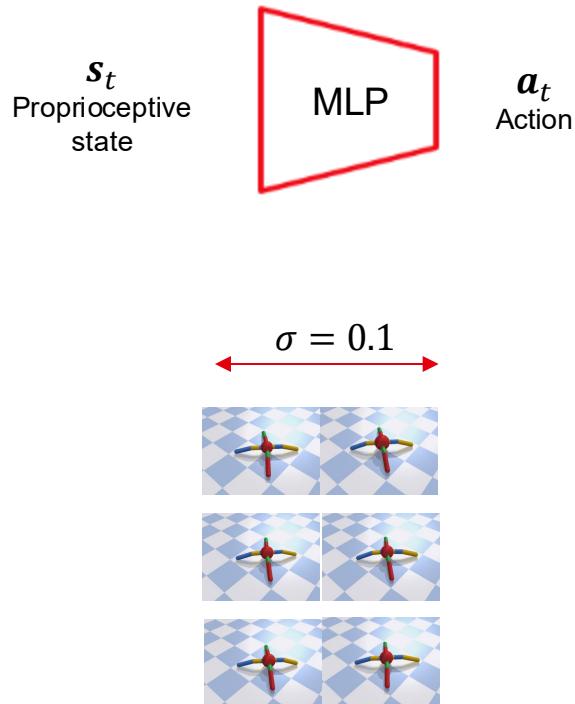
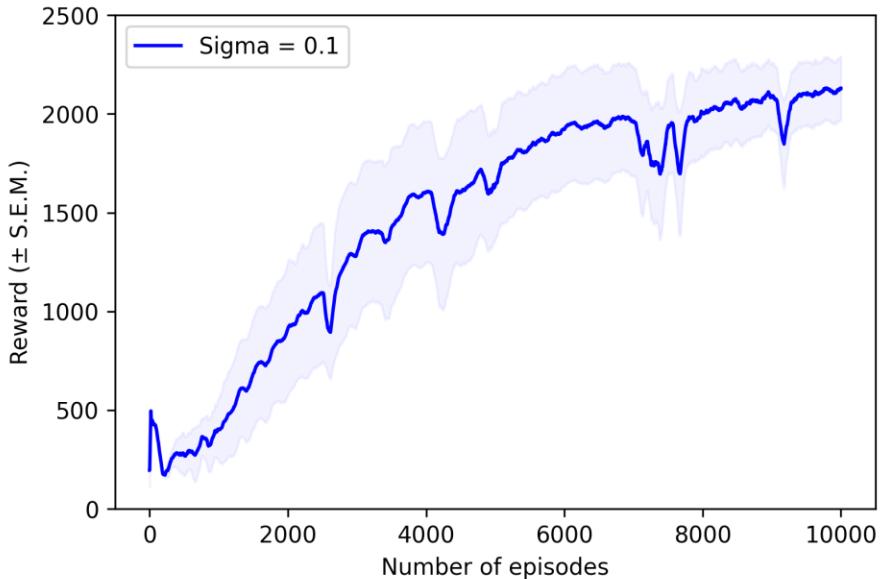
- Torso size
- Limb length
- Limb size

Every episode begins with a different perturbation of the base morphology

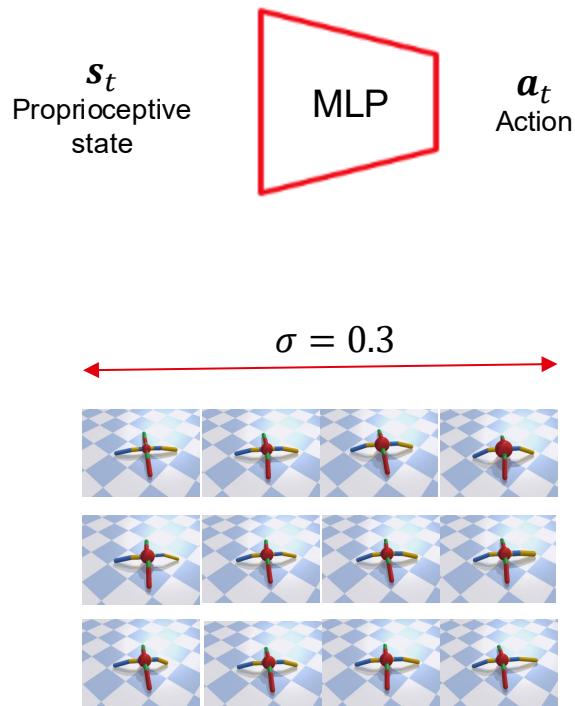
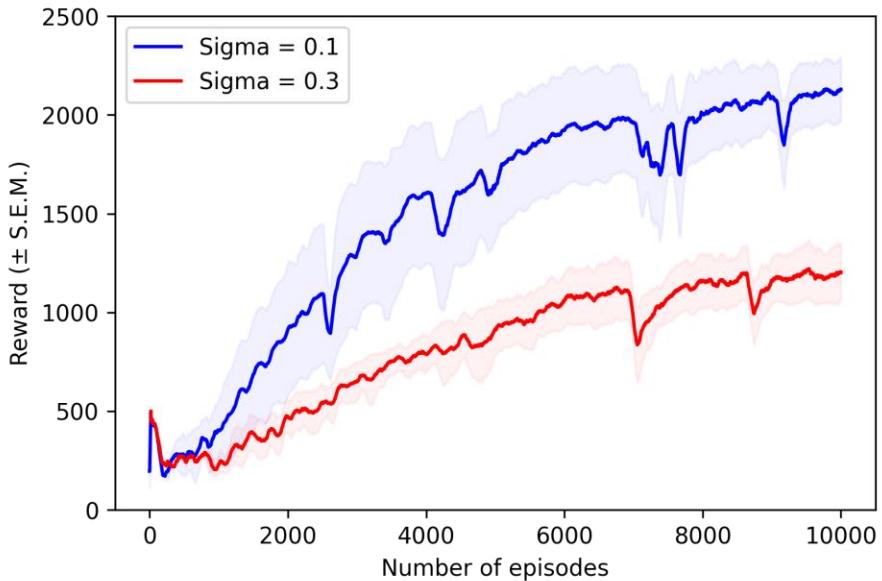
Contextual Markov Decision Process



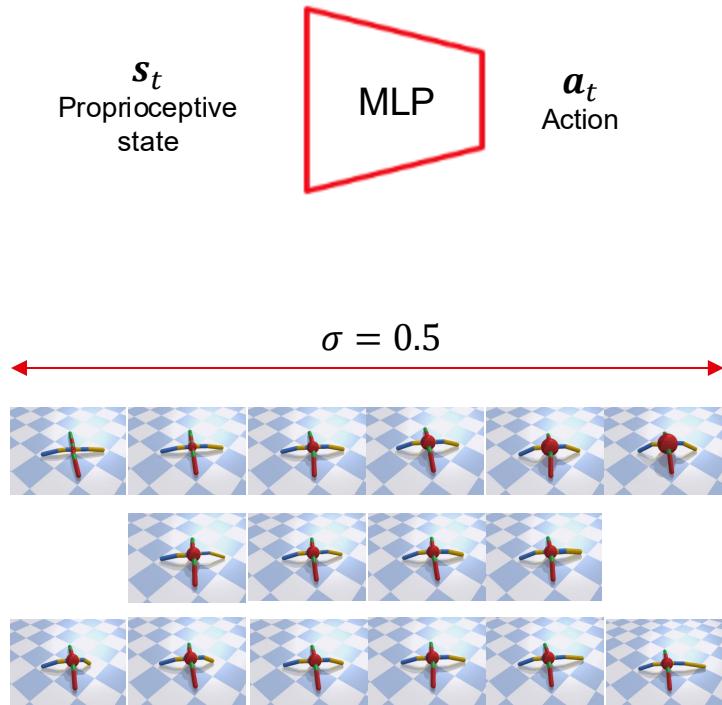
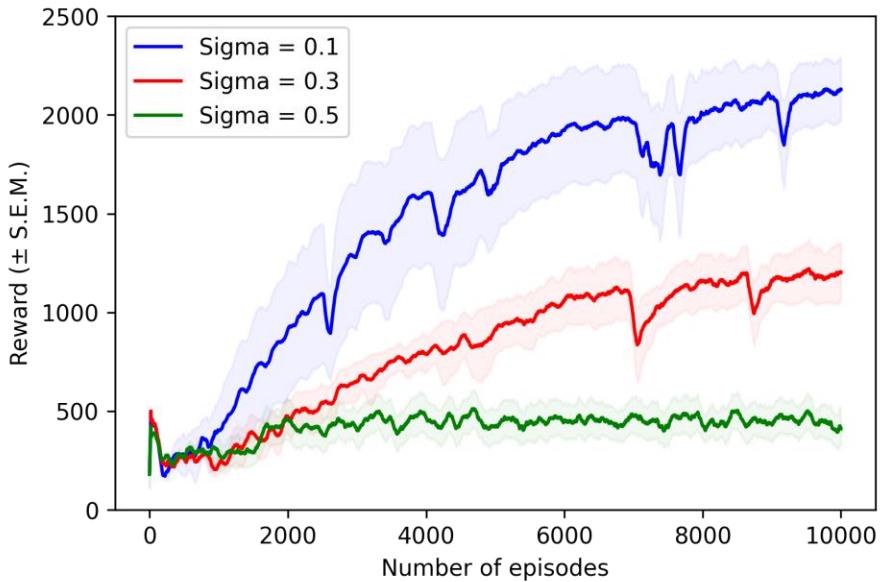
Baseline: multi-layer perceptron (MLP) policy with SAC



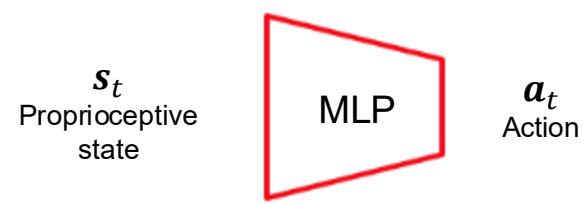
Baseline: MLP policy



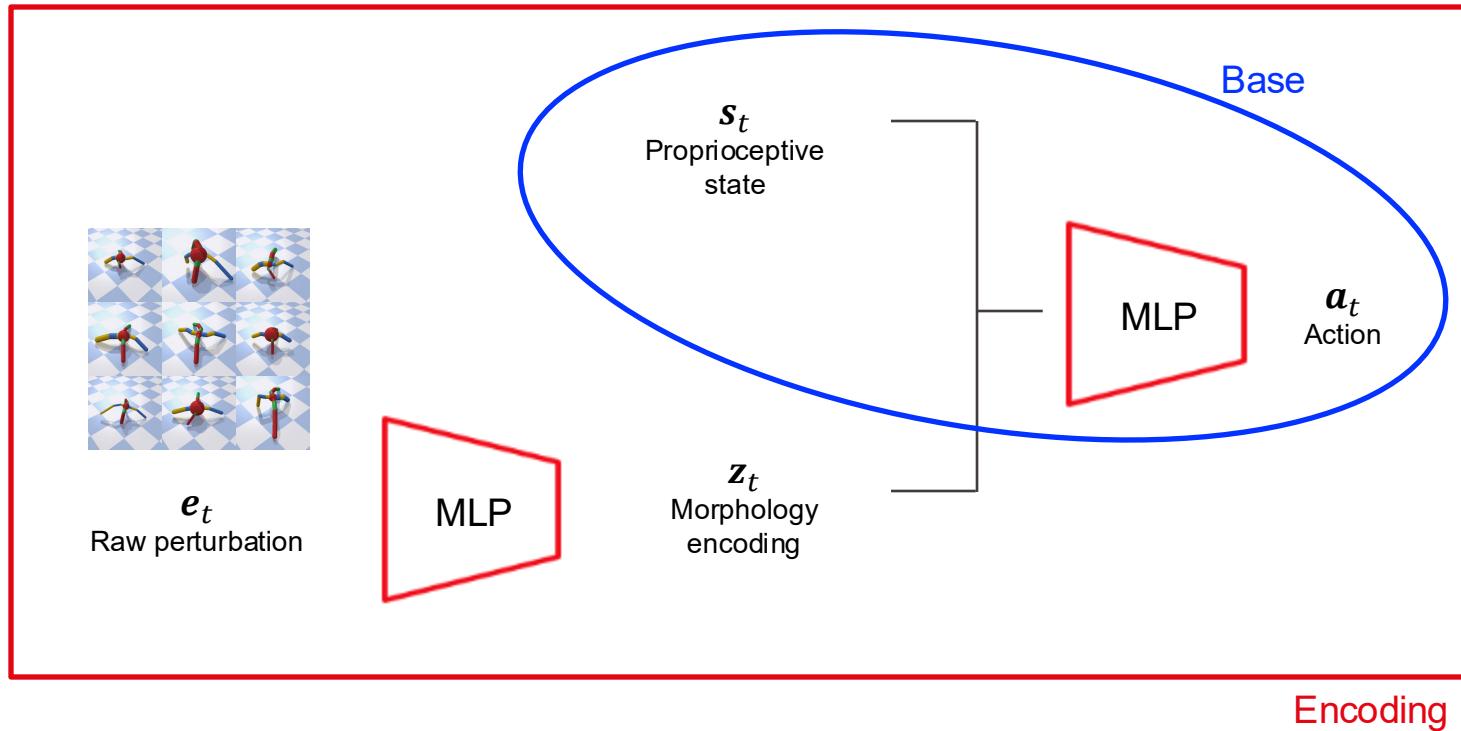
Baseline: MLP policy



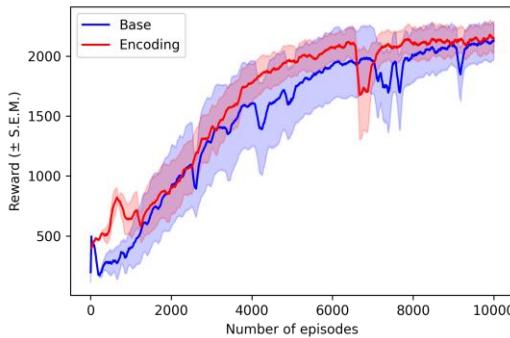
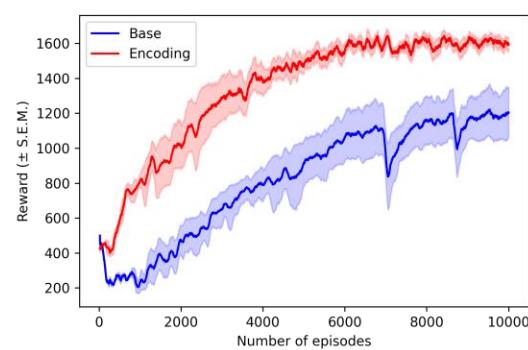
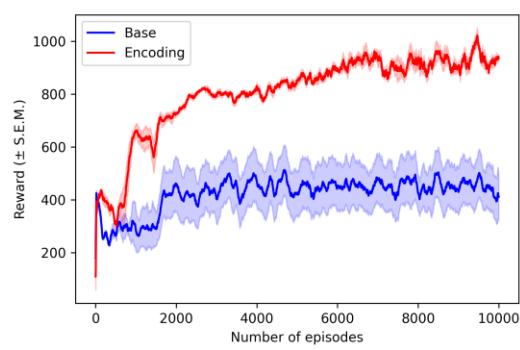
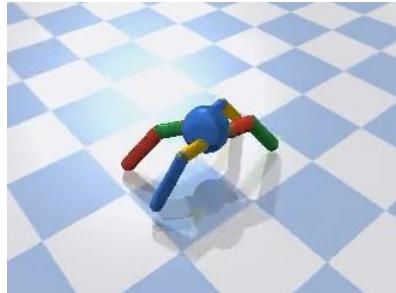
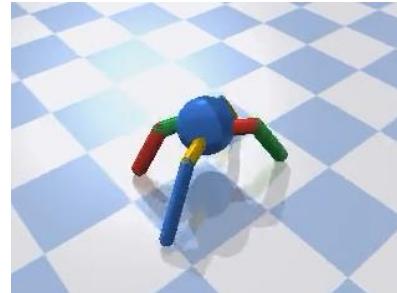
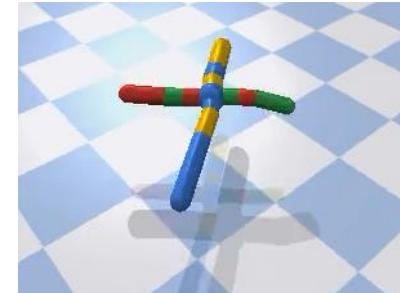
Baseline: MLP policy



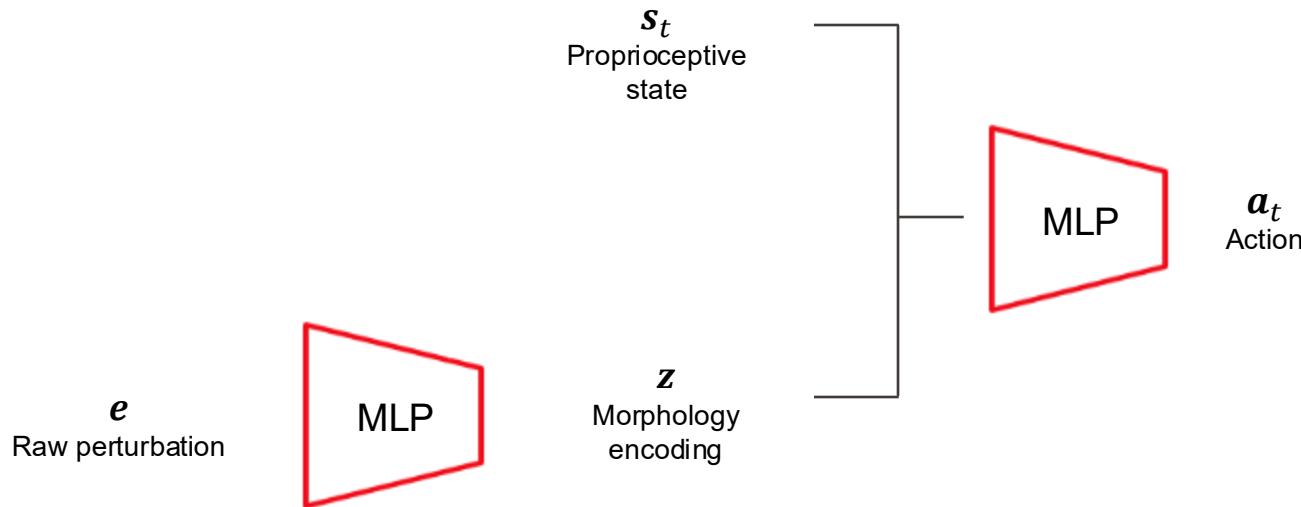
Morphology encoding policy (aka oracle)



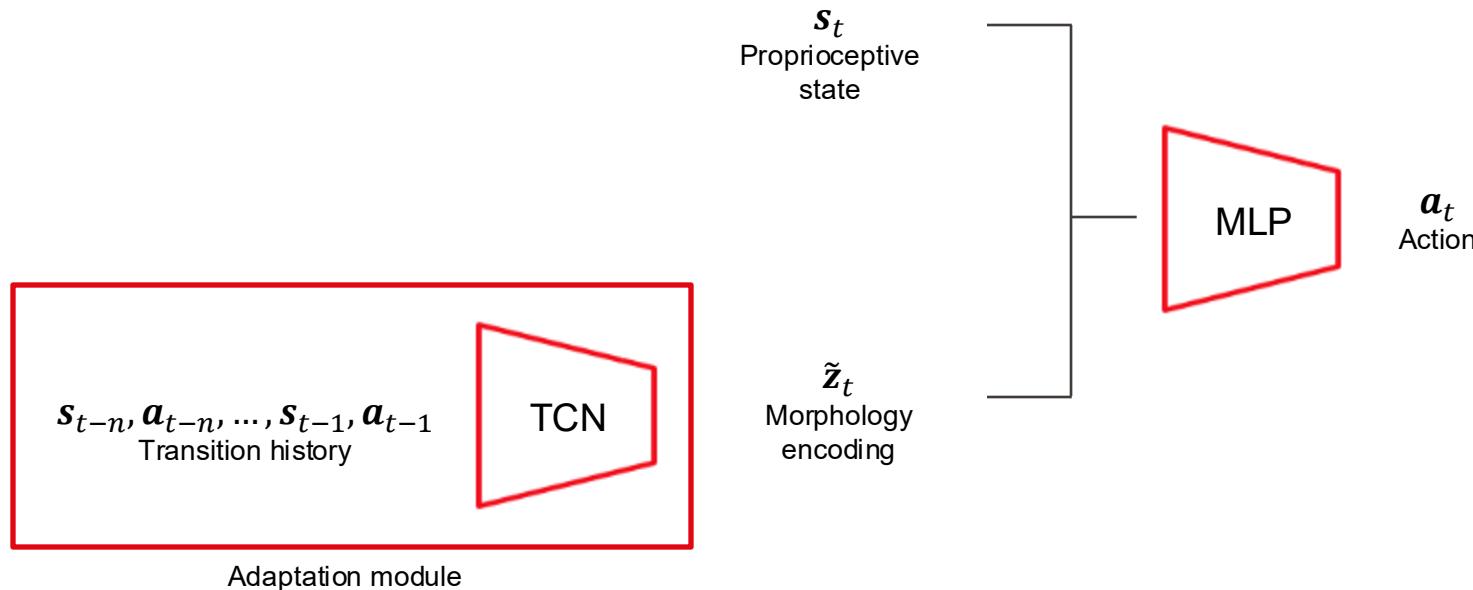
Morphology encoding policy

 $\sigma = 0.1$  $\sigma = 0.3$  $\sigma = 0.5$ 

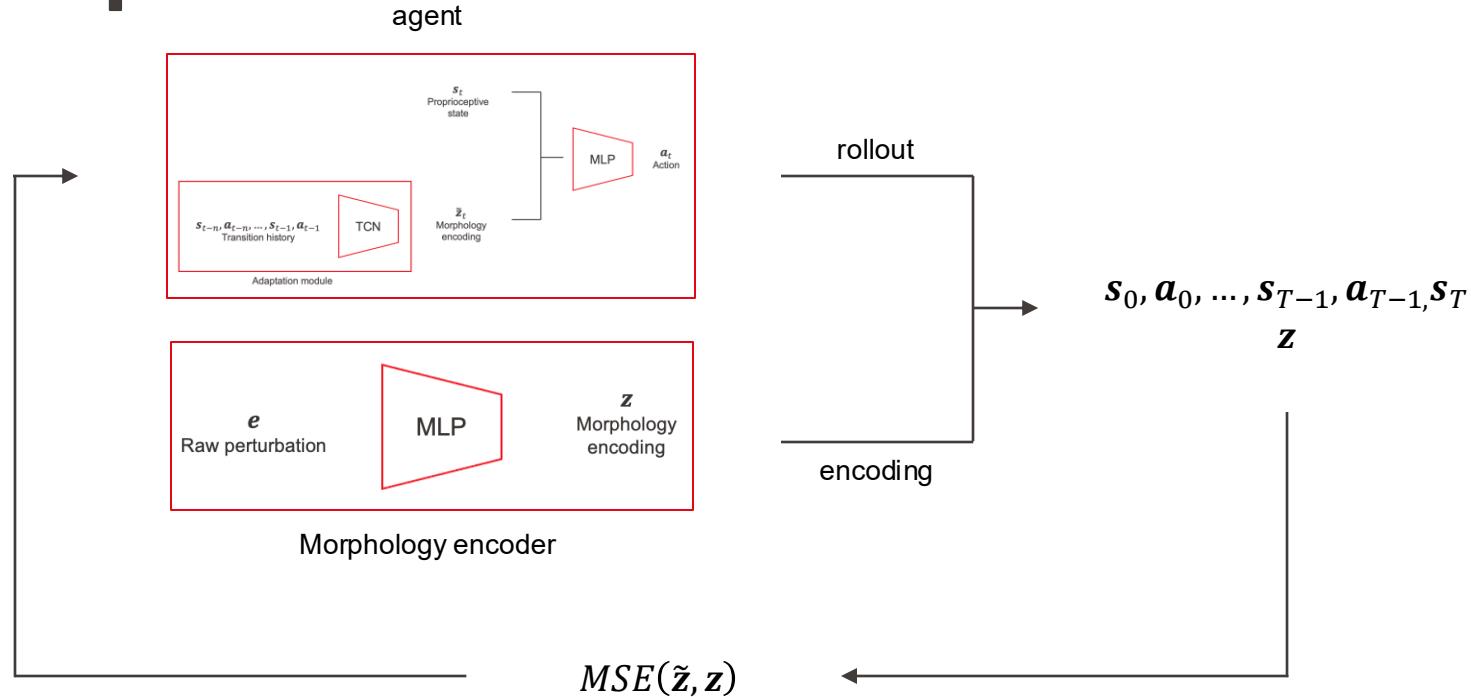
Morphology encoding from experience



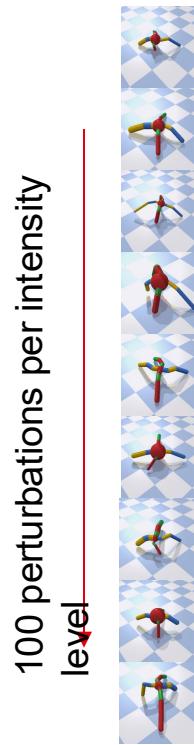
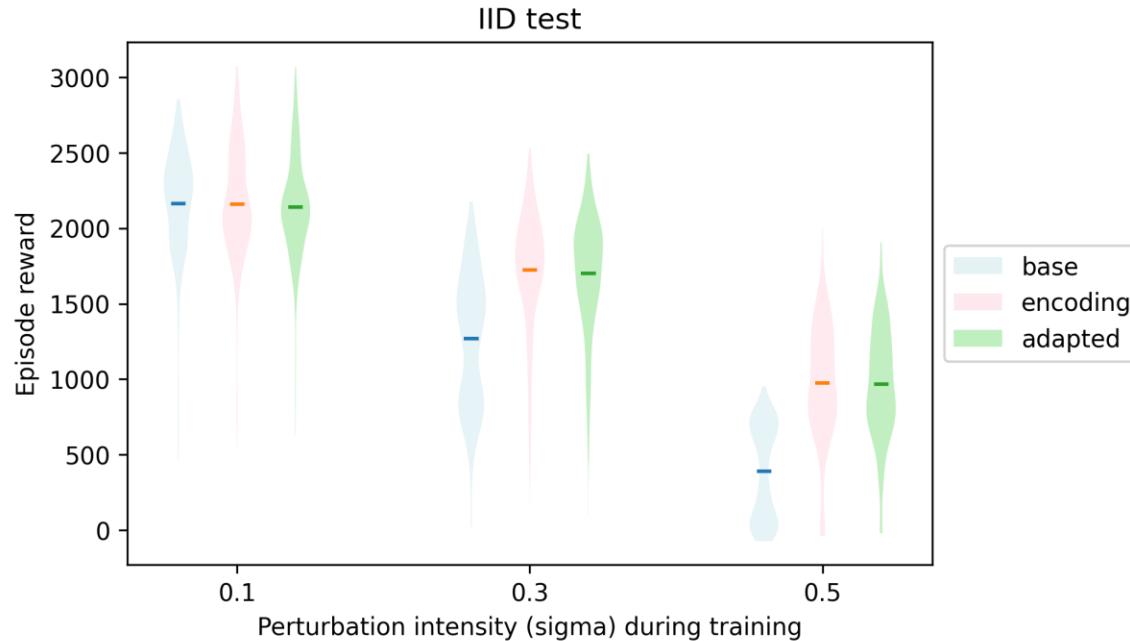
Morphology encoding from experience



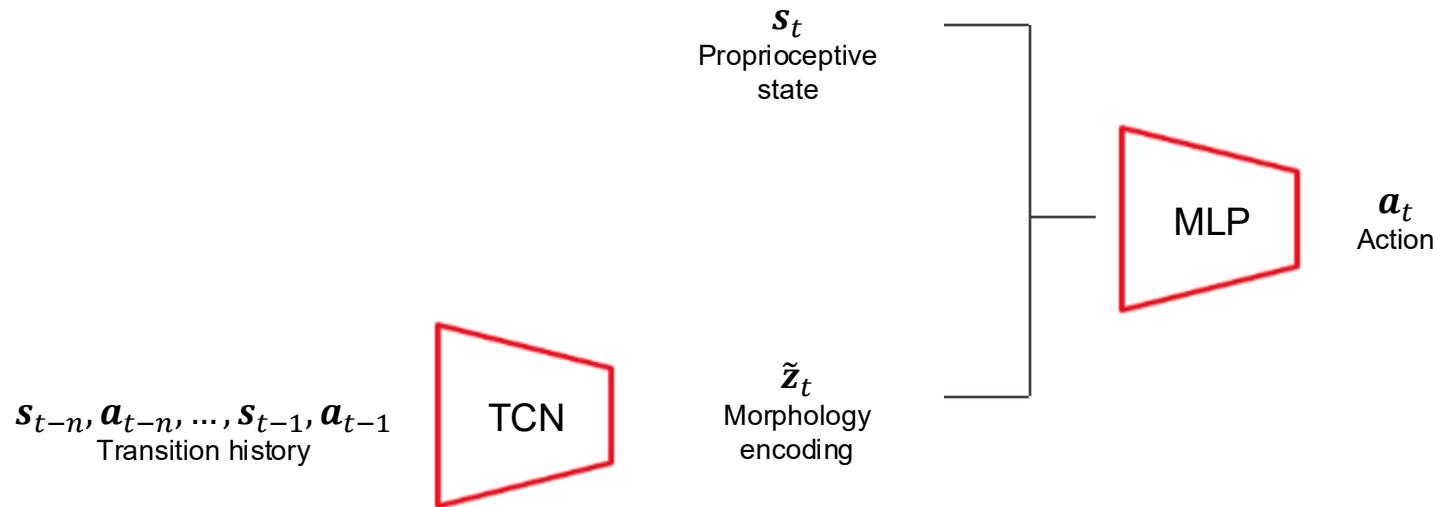
Morphology encoding from experience



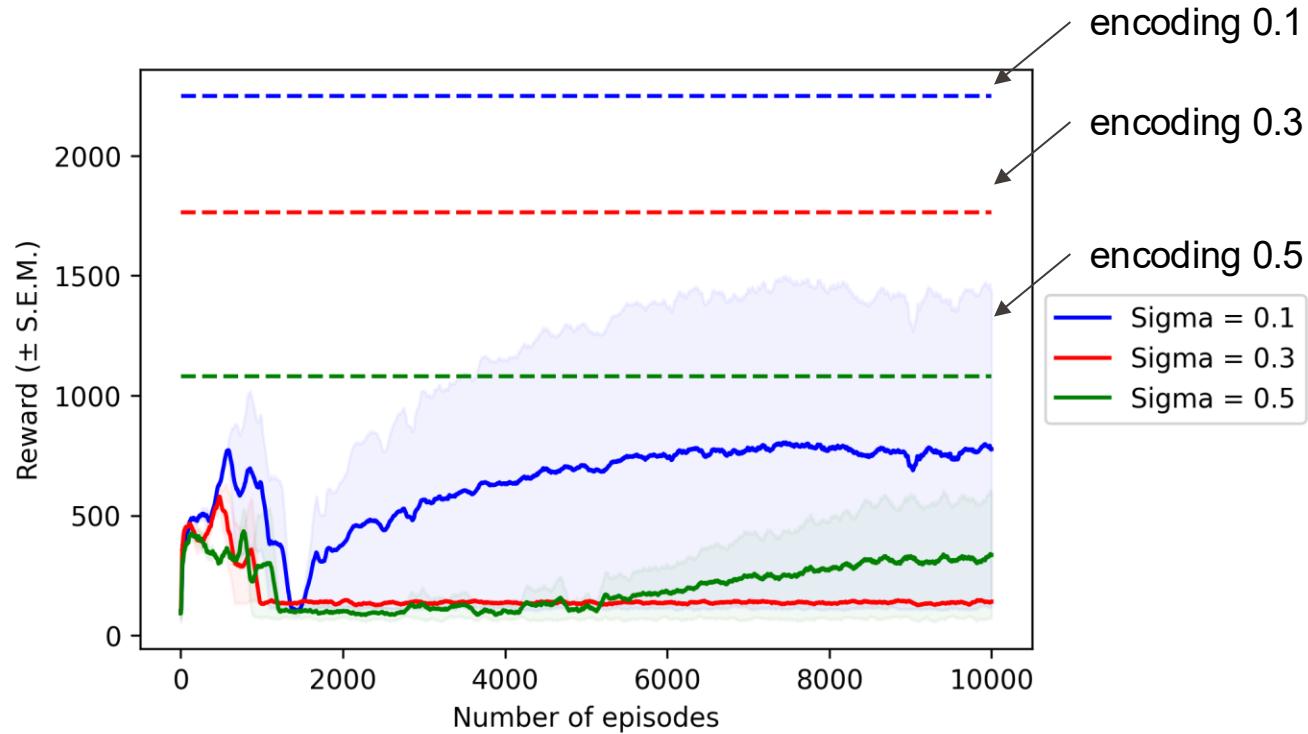
Learning with a perturbed body



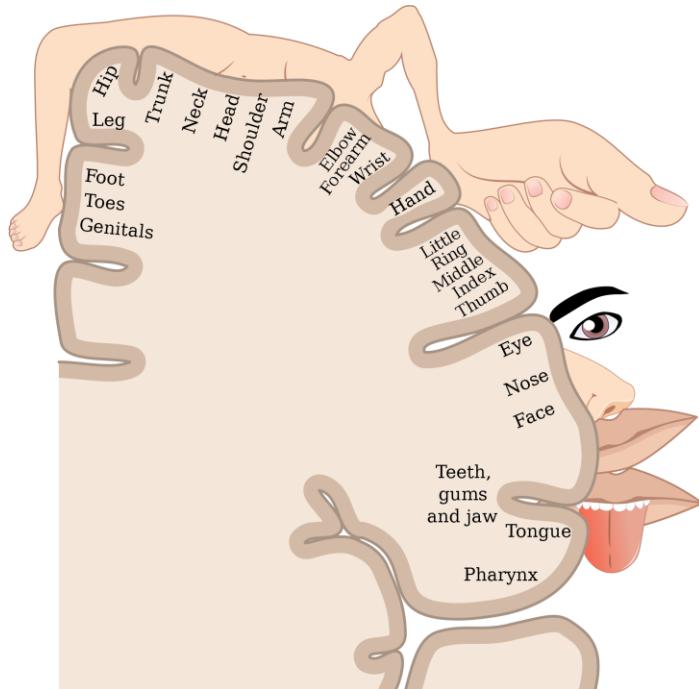
Is the 2-step training necessary?



Training the CNN encoder end-to-end

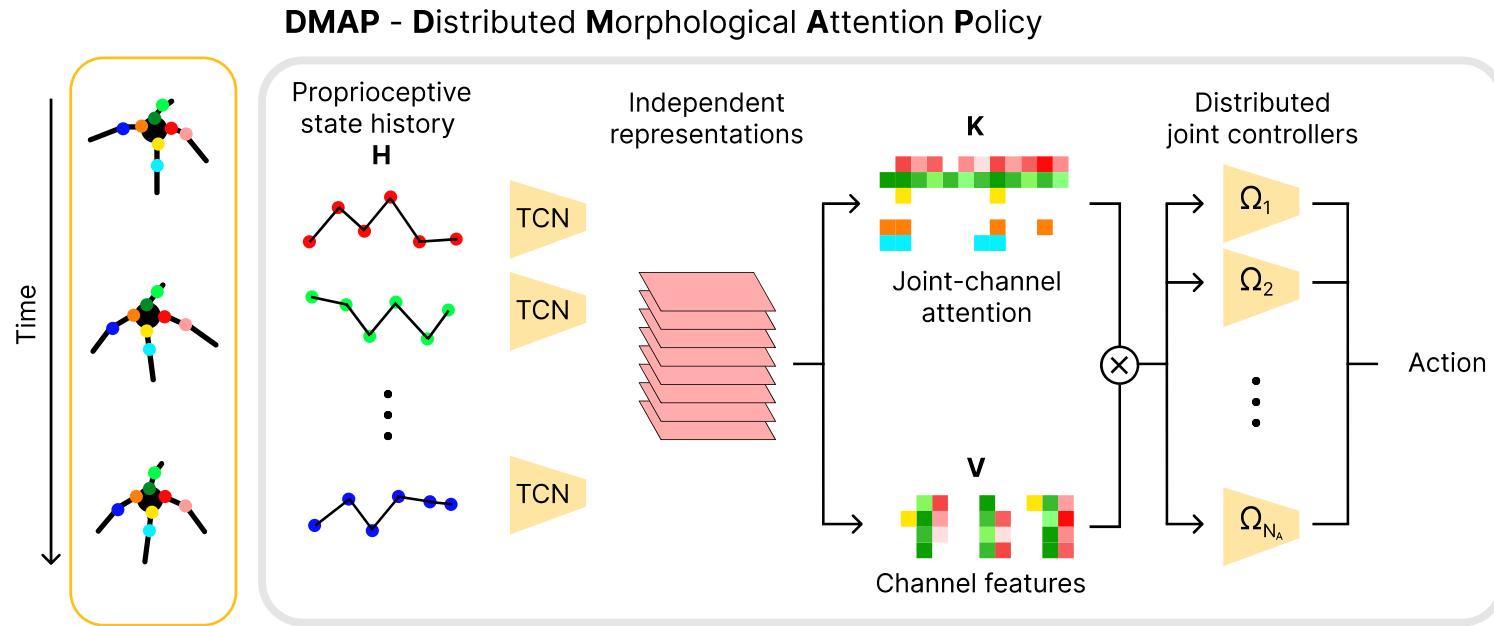


Distributed sensing and control



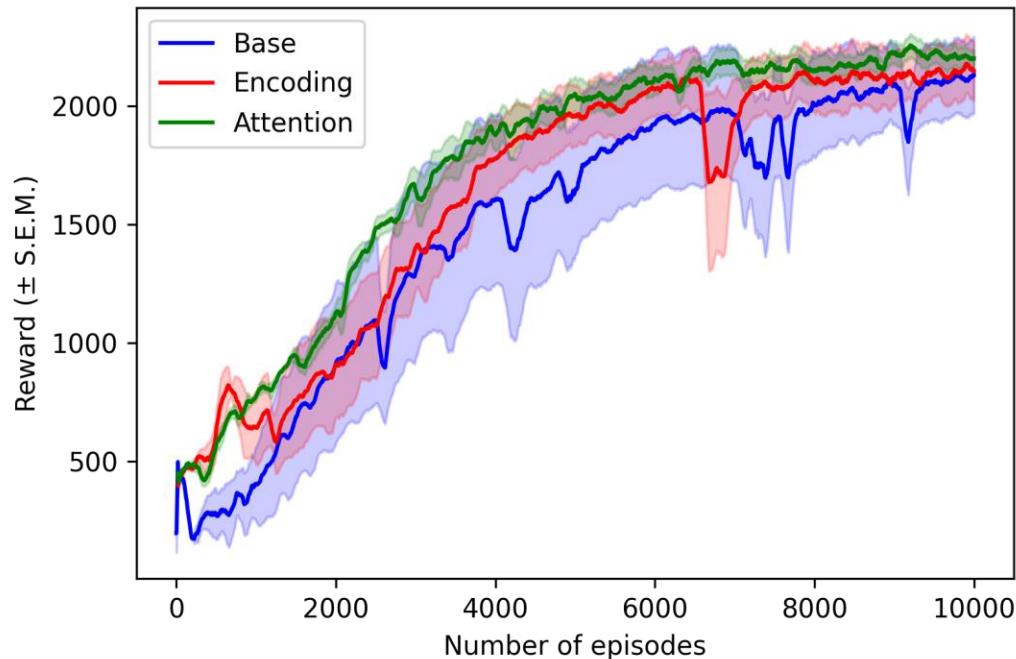
- Independent low-level processing
- High-level proprioceptive input integration
- Distributed control

DMAP's brain inspired architecture

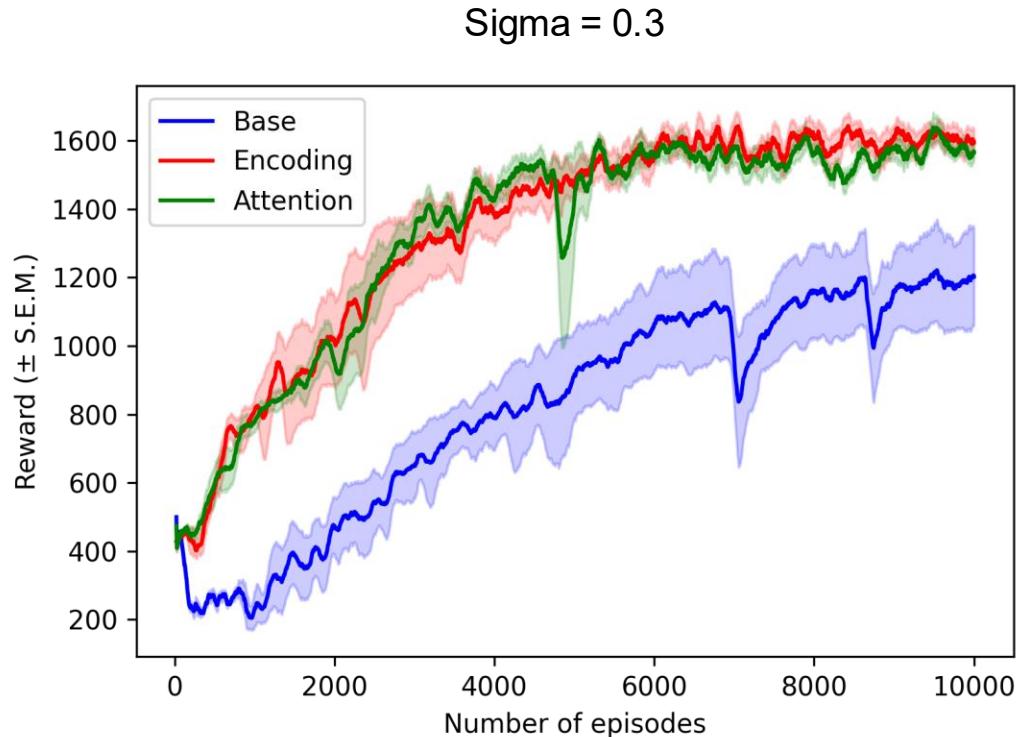


DMAP performance comparison

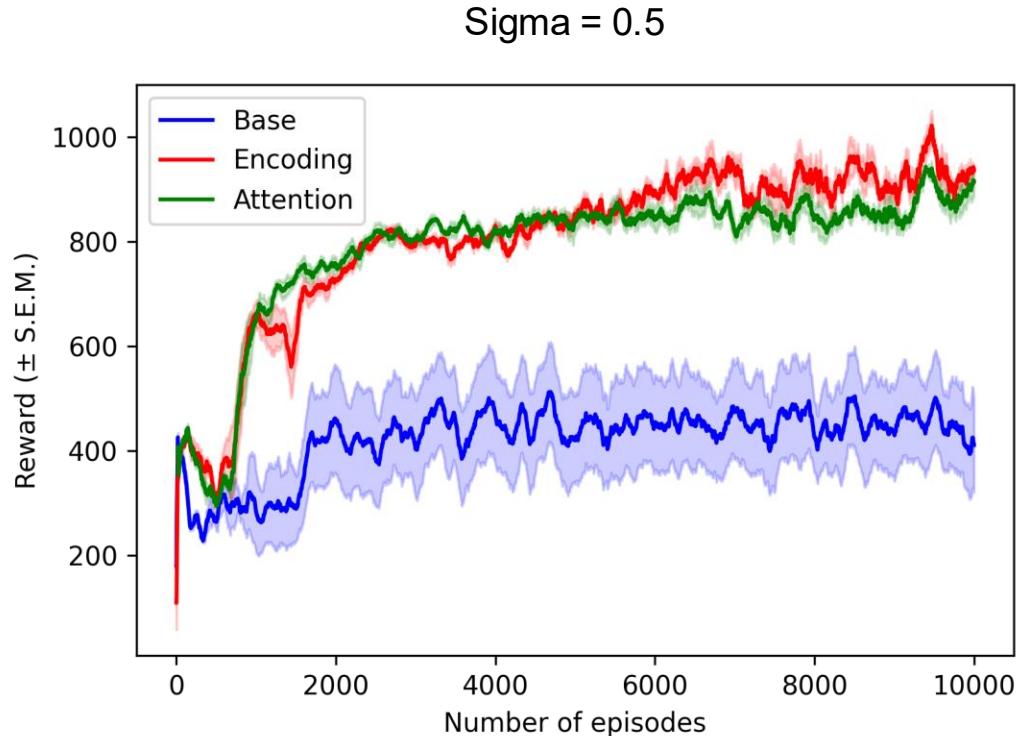
Sigma = 0.1



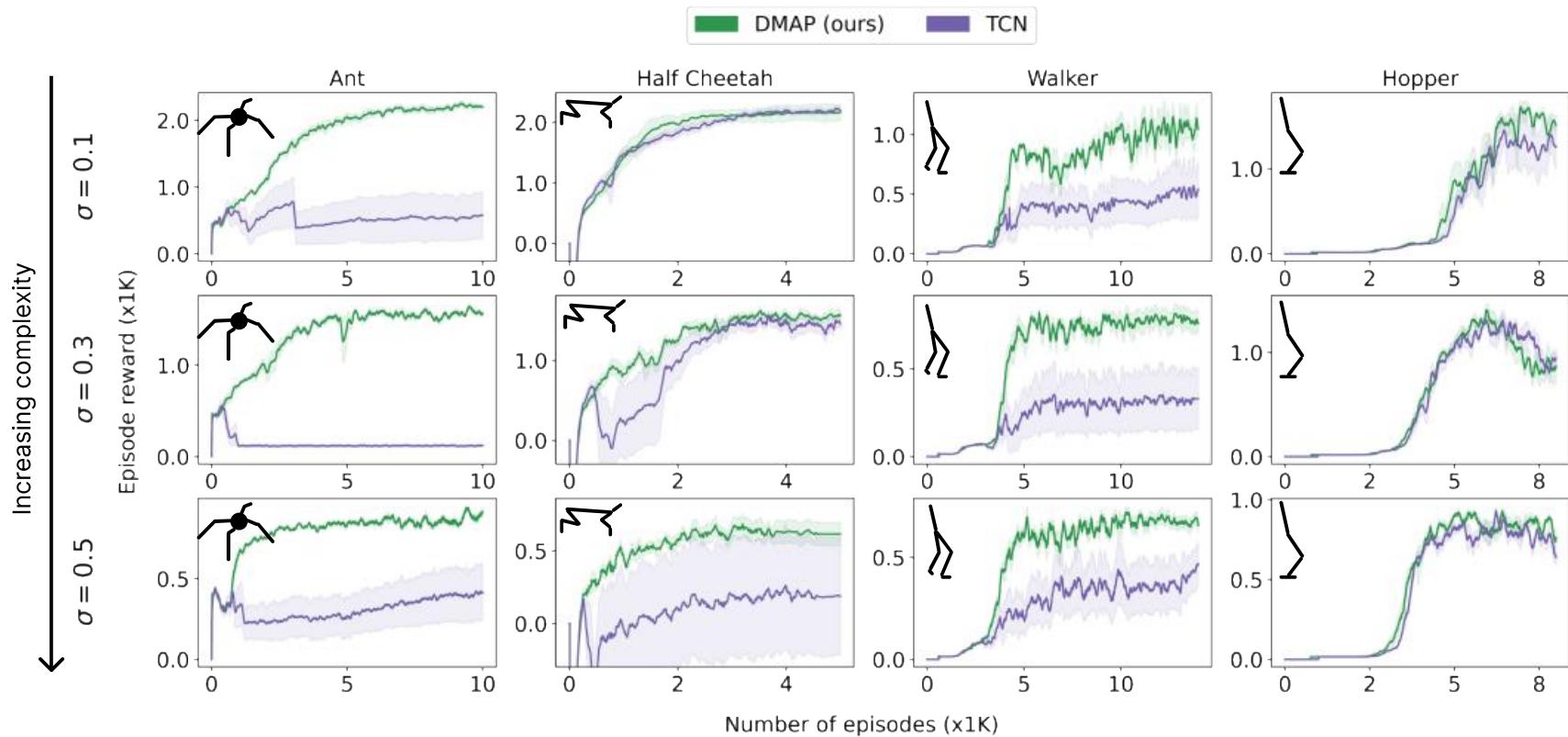
DMAP performance comparison



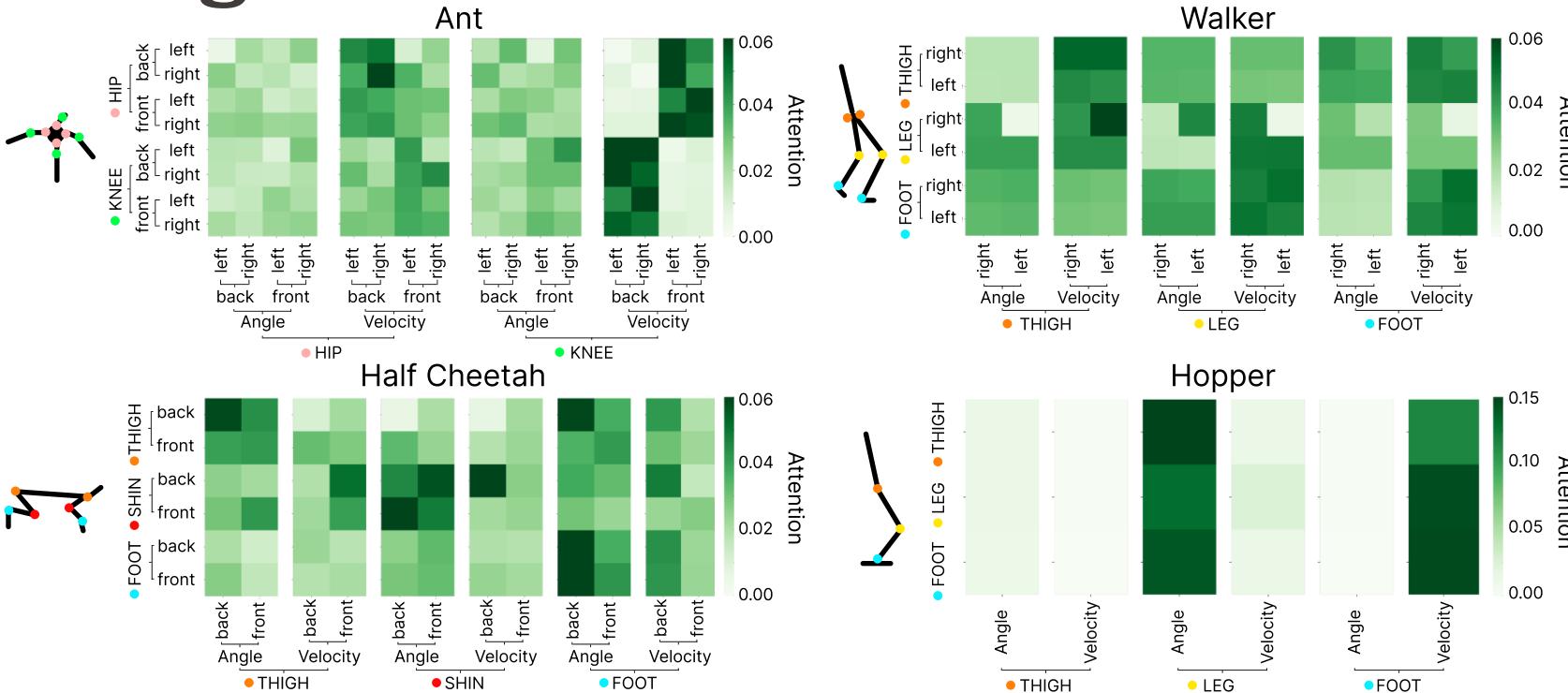
DMAP performance comparison



Results also hold across different morphologies



Analysis of the learned attention weights



Inductive biases

- We discussed a brain-inspired inductive bias (DMAP) that implicitly can deal with changing bodies (better than other policies)
- Check out Tony Zador's Perspective in Nat. Comm 2019

A critique of pure learning and what artificial neural networks can learn from animal brains

Anthony M. Zador¹

Artificial neural networks (ANNs) have undergone a revolution, catalyzed by better supervised learning algorithms. However, in stark contrast to young animals (including humans), training such networks requires enormous numbers of labeled examples, leading to the belief that animals must rely instead mainly on unsupervised learning. Here we argue that most animal behavior is not the result of clever learning algorithms—supervised or unsupervised—but is encoded in the genome. Specifically, animals are born with highly structured brain connectivity, which enables them to learn very rapidly. Because the wiring diagram is far too complex to be specified explicitly in the genome, it must be compressed through a “genomic bottleneck”. The genomic bottleneck suggests a path toward ANNs capable of rapid learning.

Using Language

Natural language instructions induce compositional generalization in networks of neurons

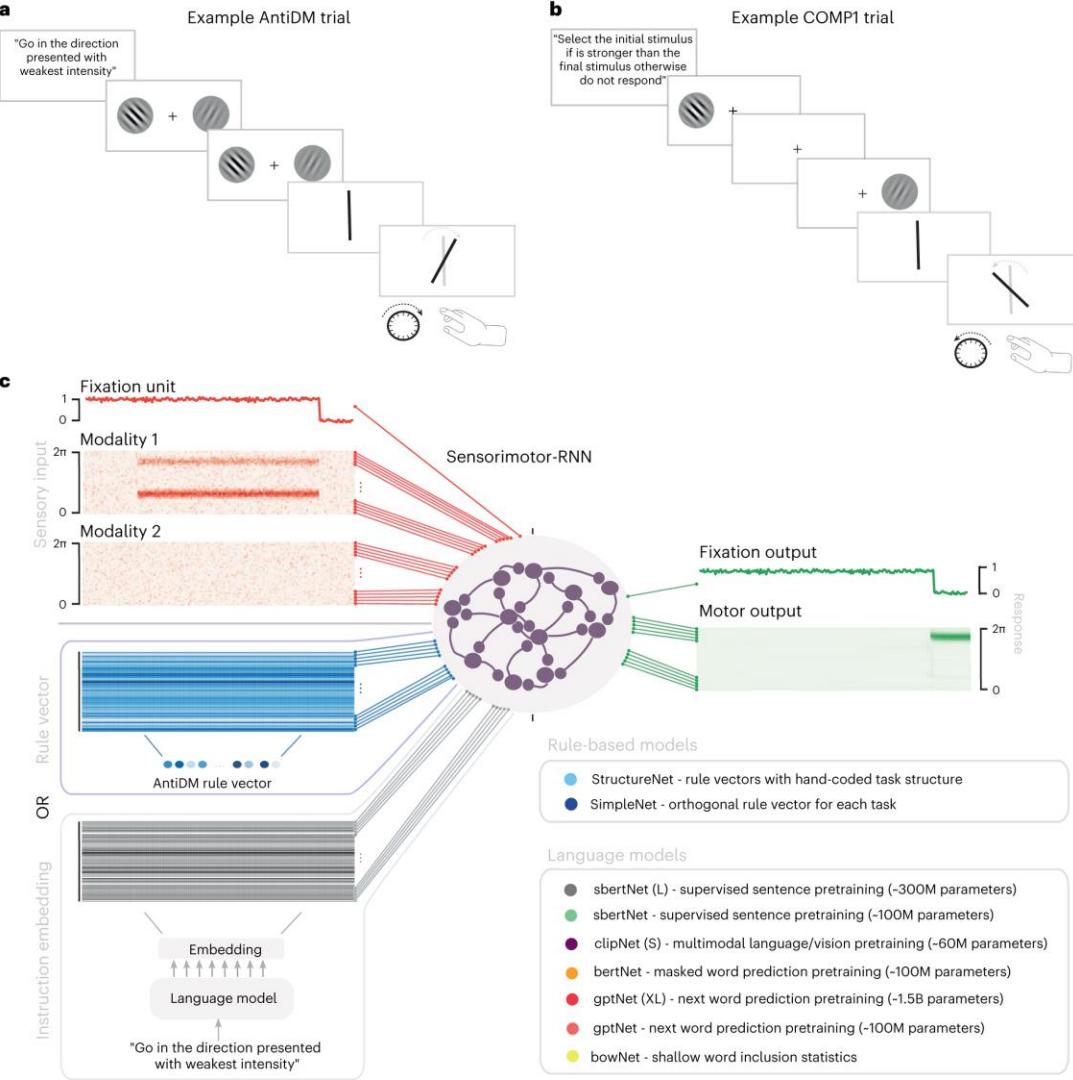
Reidar Riveland & Alexandre Pouget

[Nature Neuroscience](#) (2024) | [Cite this article](#)

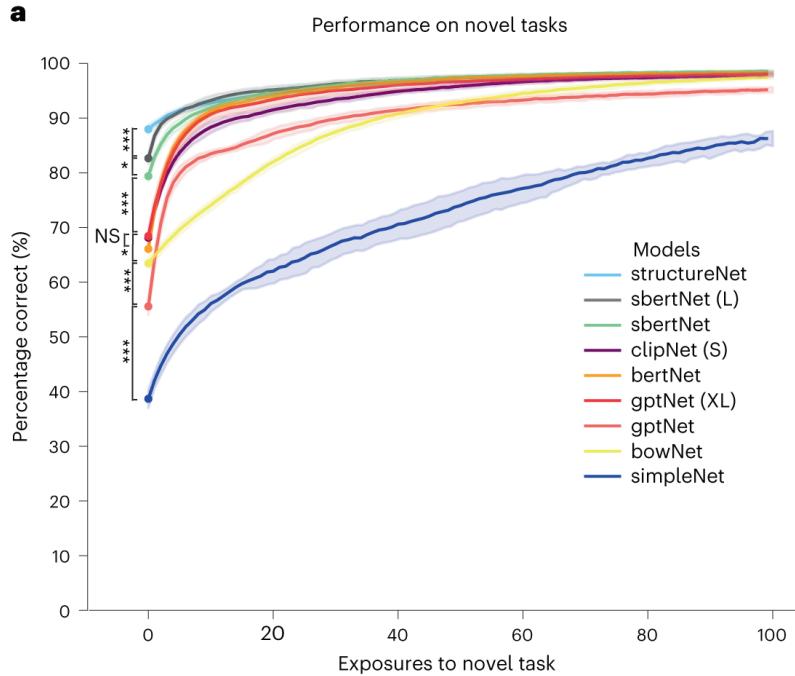
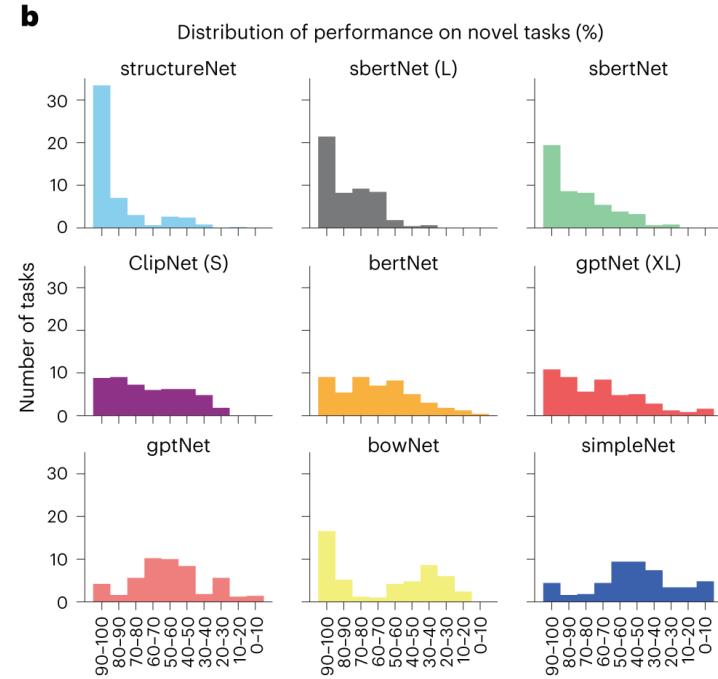
29k Accesses | 222 Altmetric | [Metrics](#)

Recent example of a illustrating the power of natural language instructions
For (mostly) "cognitive tasks".

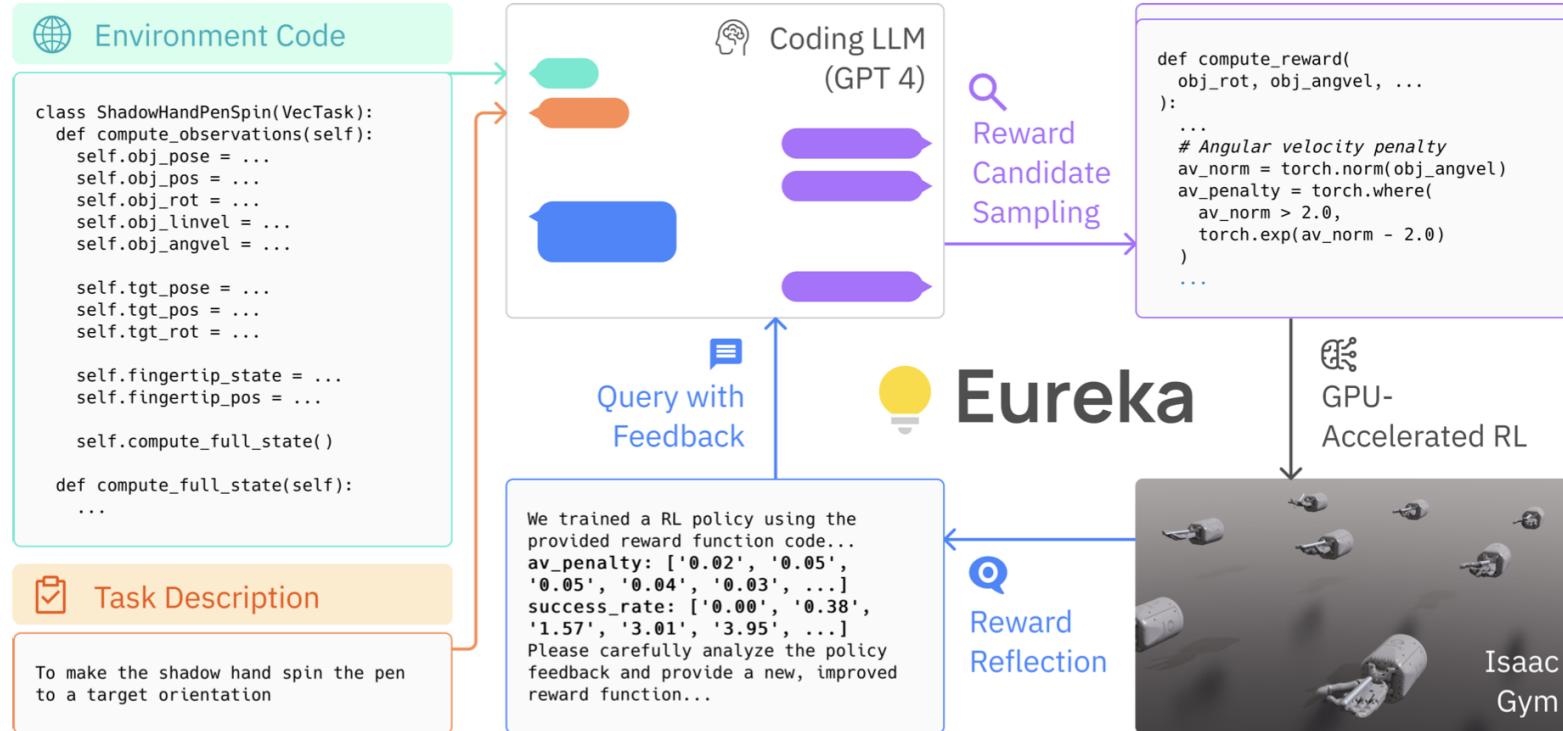
Caption: a,b, Illustrations of example trials as they might appear in a laboratory setting. The trial is instructed, then stimuli are presented with different angles and strengths of contrast. The agent must then respond with the proper angle during the response period. a, An example AntiDM trial where the agent must respond to the angle presented with the least intensity. b, An example COMP1 trial where the agent must respond to the first angle if it is presented with higher intensity than the second angle otherwise repress response. c, Diagram of model inputs and outputs. Sensory inputs (fixation unit, modality 1, modality 2) are shown in red and model outputs (fixation output, motor output) are shown in green. Models also receive a rule vector (blue) or the embedding that results from passing task instructions through a pretrained language model (gray). A list of models tested is provided in the inset.



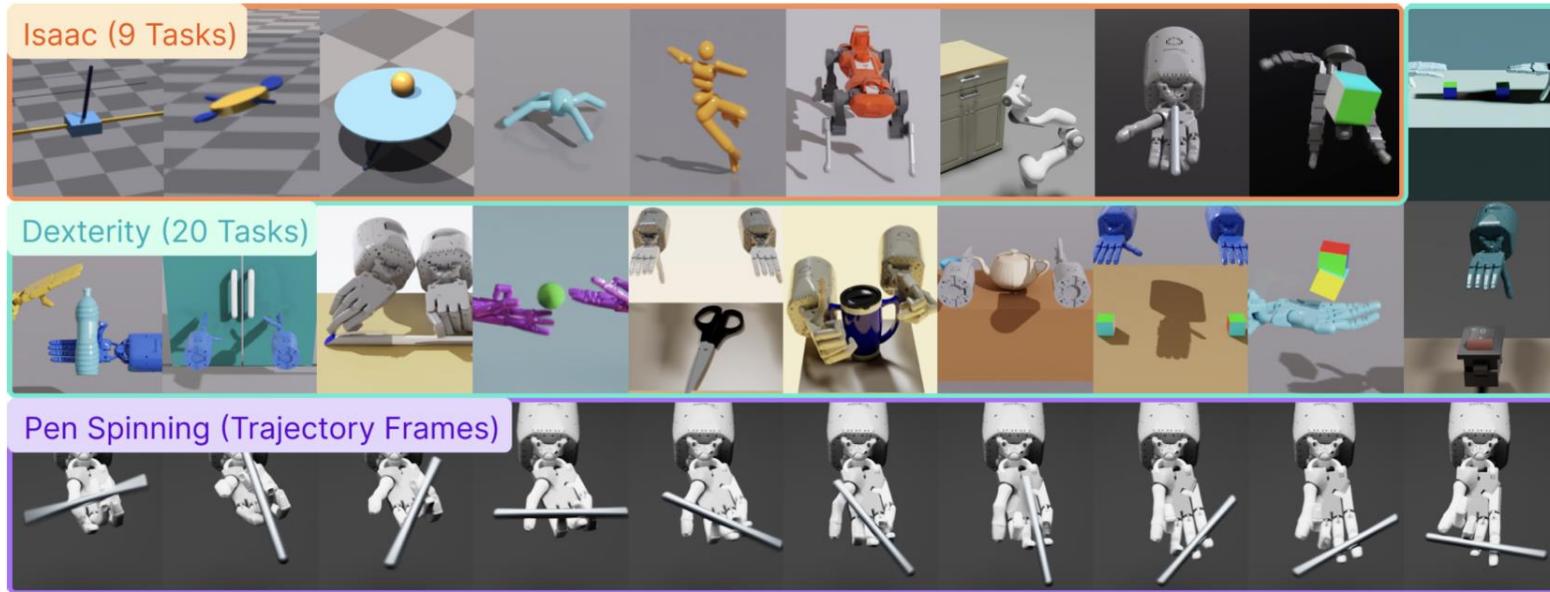
Natural language instructions induce compositional generalization in networks of neurons



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA CODING LARGE LANGUAGE MODELS



EUREKA: HUMAN-LEVEL REWARD DESIGN VIA CODING LARGE LANGUAGE MODELS

■

EUREKA: HUMAN-LEVEL REWARD DESIGN VIA CODING LARGE LANGUAGE MODELS

Algorithm 1 EUREKA

```

1: Require: Task description  $l$ , environment code  $M$ , coding LLM LLM, fitness function  $F$ , initial prompt prompt
2: Hyperparameters: search iteration  $N$ , iteration batch size  $K$ 
3: for  $N$  iterations do
4:   // Sample  $K$  reward code from LLM
5:    $R_1, \dots, R_K \sim \text{LLM}(l, M, \text{prompt})$ 
6:   // Evaluate reward candidates
7:    $s_1 = F(R_1), \dots, s_K = F(R_K)$ 
8:   // Reward reflection
9:   prompt := prompt : Reflection( $R_{best}^n, s_{best}^n$ ), where  $best = \arg \max_k s_1, \dots, s_K$ 
10:  // Update Eureka reward
11:   $R_{\text{Eureka}}, s_{\text{Eureka}} = (R_{best}^n, s_{best}^n)$ , if  $s_{best}^n > s_{\text{Eureka}}$ 
12: Output:  $R_{\text{Eureka}}$ 

```

```

def compute_reward(object_rot, goal_rot, object_angvel, object_pos, fingertip_pos):
    # Rotation reward
    rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2
    - rotation_reward_temp = 20.0
    + rotation_reward_temp = 30.0                                         Changing hyperparameter
    rotation_reward = torch.exp(-rotation_reward_temp * rot_diff)

    # Distance reward
    + min_distance_temp = 10.0
    min_distance = torch.min(torch.norm(fingertip_pos - object_pos[:, None], dim=2), dim=1).values
    - distance_reward = min_distance
    + uncapped_distance_reward = torch.exp(-min_distance_temp * min_distance)
    + distance_reward = torch.clamp(uncapped_distance_reward, 0.0, 1.0)           Changing functional form

    - total_reward = rotation_reward + distance_reward
    + # Angular velocity penalty
    + angvel_norm = torch.norm(object_angvel, dim=1)
    + angvel_threshold = 0.5
    + angvel_penalty_temp = 5.0
    + angular_velocity_penalty = torch.where(angvel_norm > angvel_threshold,
    +                                         torch.exp(-angvel_penalty_temp * (angvel_norm - angvel_threshold)), torch.zeros_like(angvel_norm))
    + total_reward = 0.5 * rotation_reward + 0.3 * distance_reward - 0.2 * angular_velocity_penalty           Adding new component

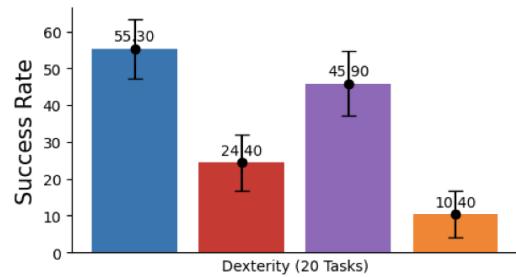
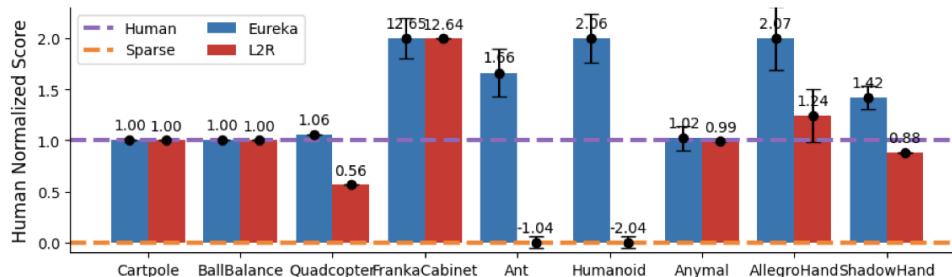
    reward_components = {
        "rotation_reward": rotation_reward,
        "distance_reward": distance_reward,
    +   "angular_velocity_penalty": angular_velocity_penalty,
    }

    return total_reward, reward_components

```

Figure 3: EUREKA can zero-shot generate executable rewards and then flexibly improve them with many distinct types of free-form modification, such as (1) changing the hyperparameter of existing reward components, (2) changing the functional form of existing reward components, and (3) introducing new reward components.

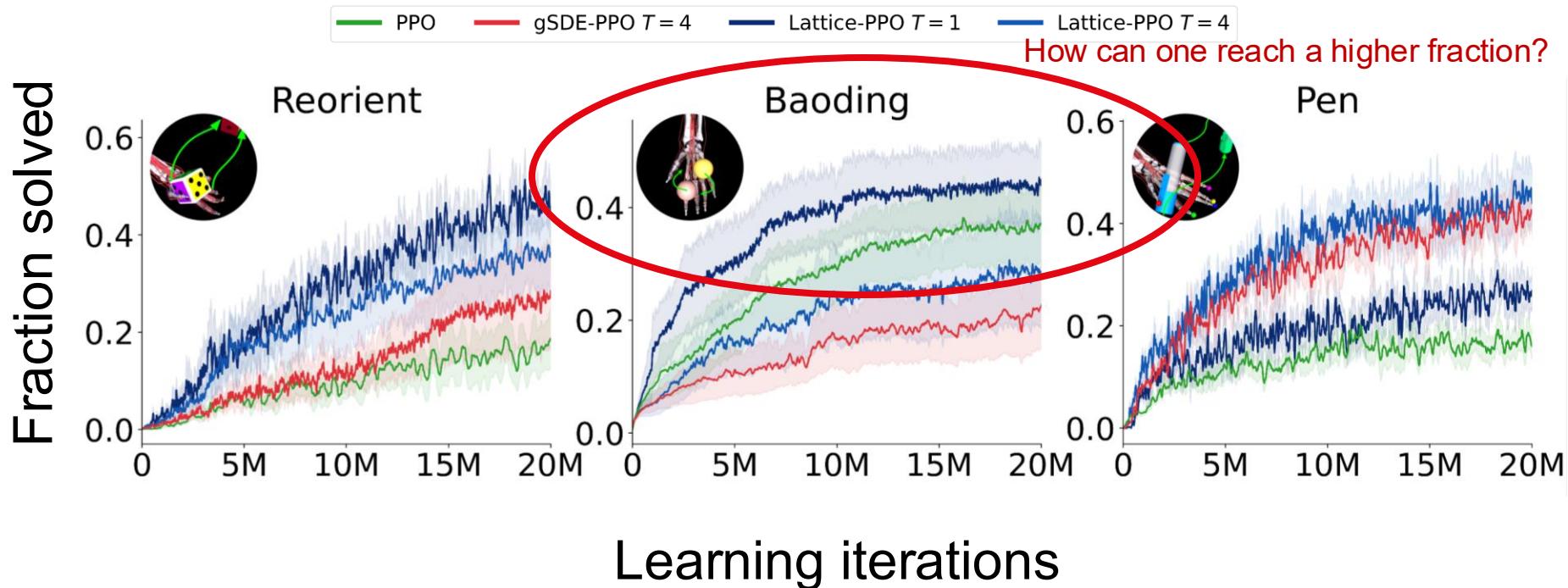
EUREKA: HUMAN-LEVEL REWARD DESIGN VIA CODING LARGE LANGUAGE MODELS

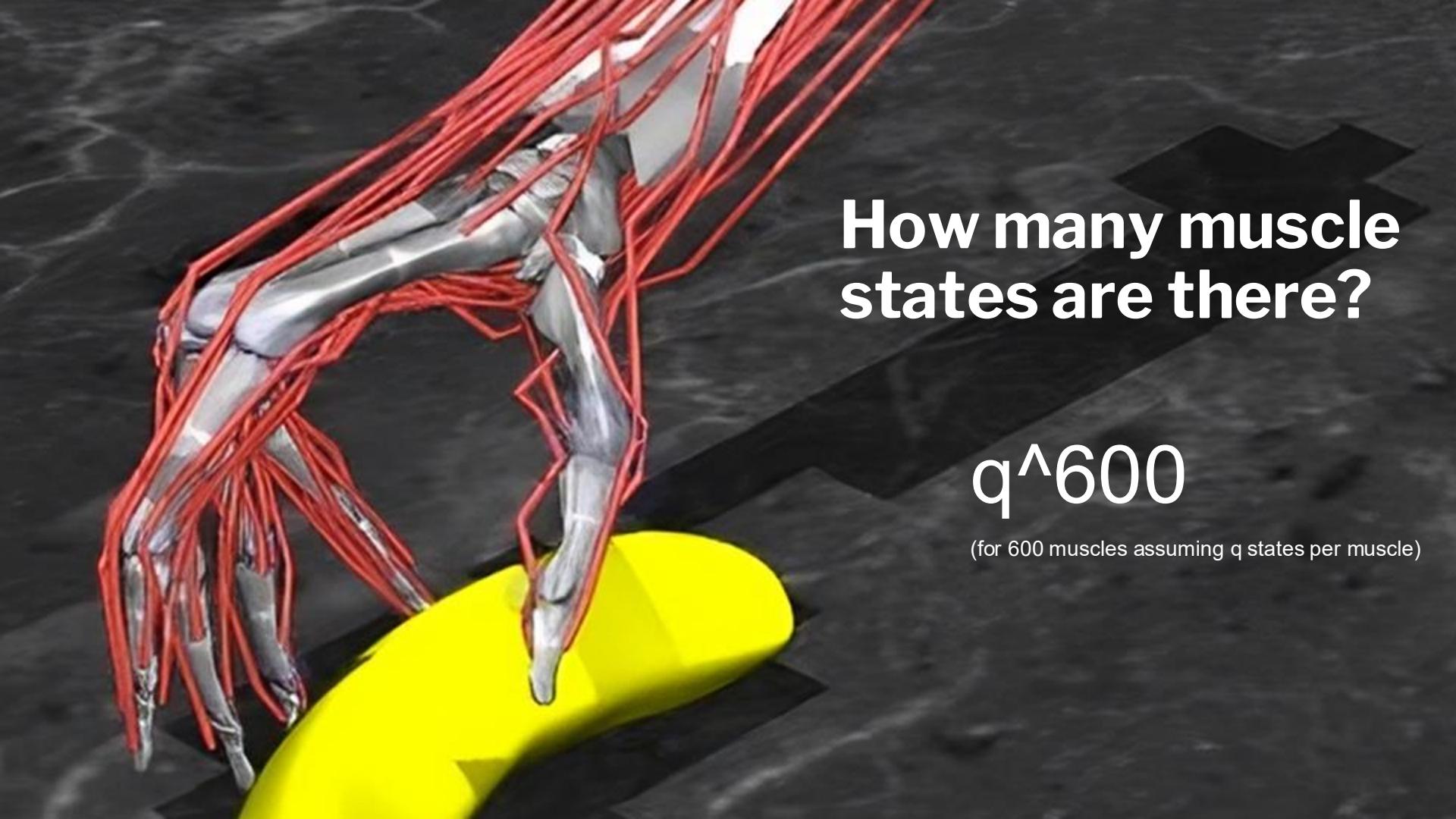


Human: expert written reward functions

Check out some videos: <https://eureka-research.github.io>

Reminder: Object manipulation learning curves

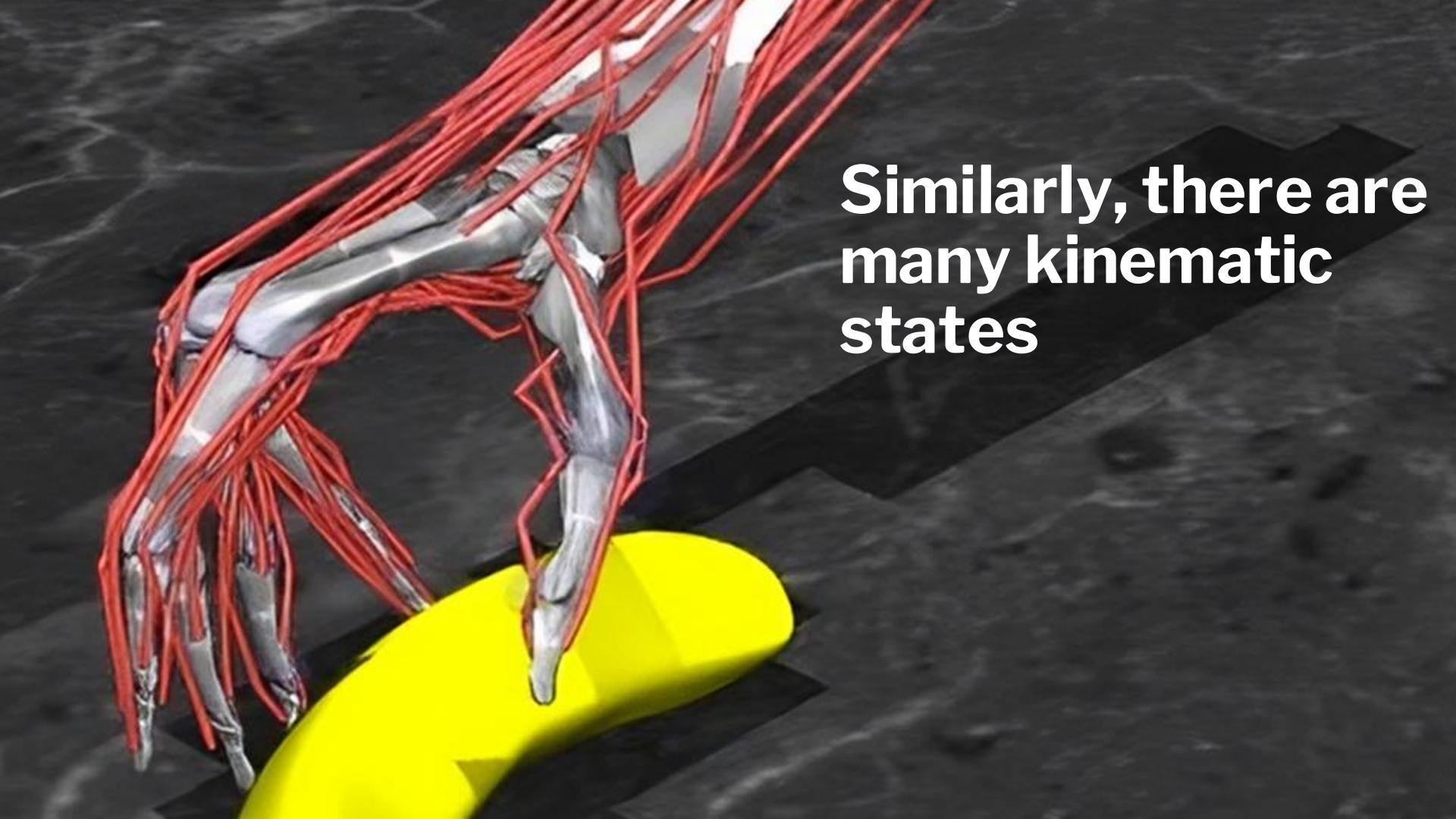




How many muscle
states are there?

q^600

(for 600 muscles assuming q states per muscle)

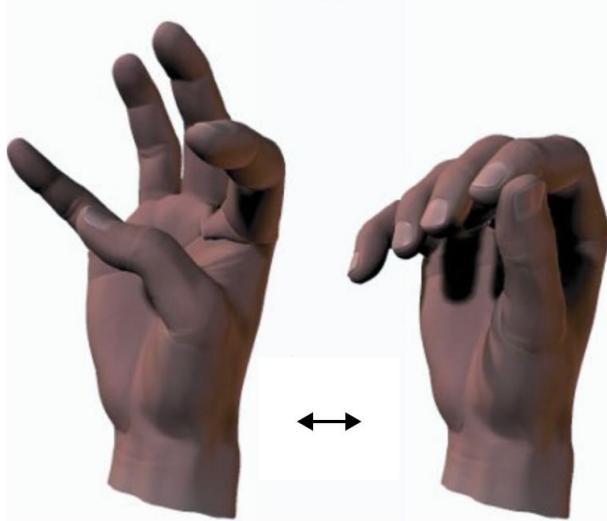
A 3D rendering of a robotic hand with red tendons and a yellow object it is grasping.

Similarly, there are
many kinematic
states

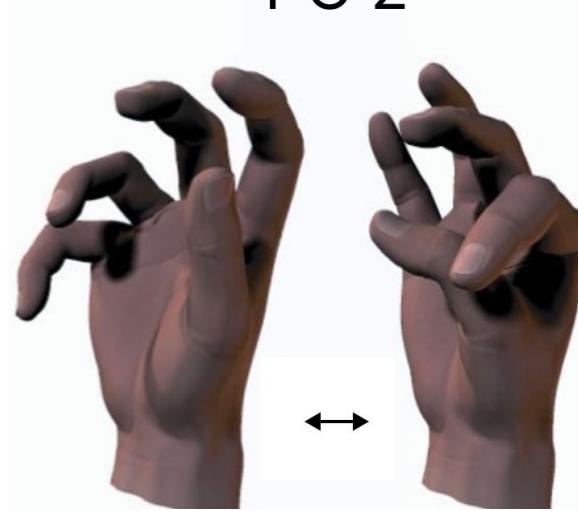
Boading balls: an example skill

How do humans control the hand?

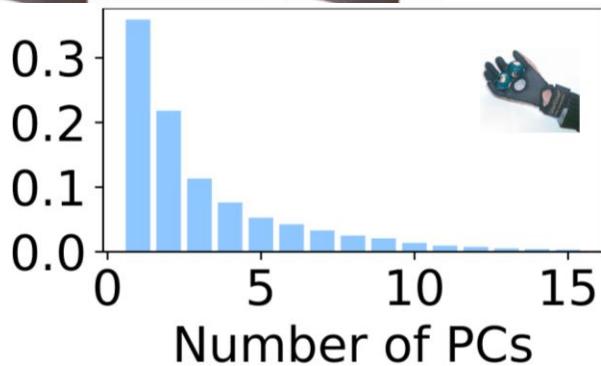
PC 1



PC 2



Human



Classic result: Bernstein, Bizzi, D'Avella, ...

- Todorov, & Ghahramani,
Annual International Conference of the IEEE Engineering in Medicine and Biology 2004

What about other object-manipulation tasks?

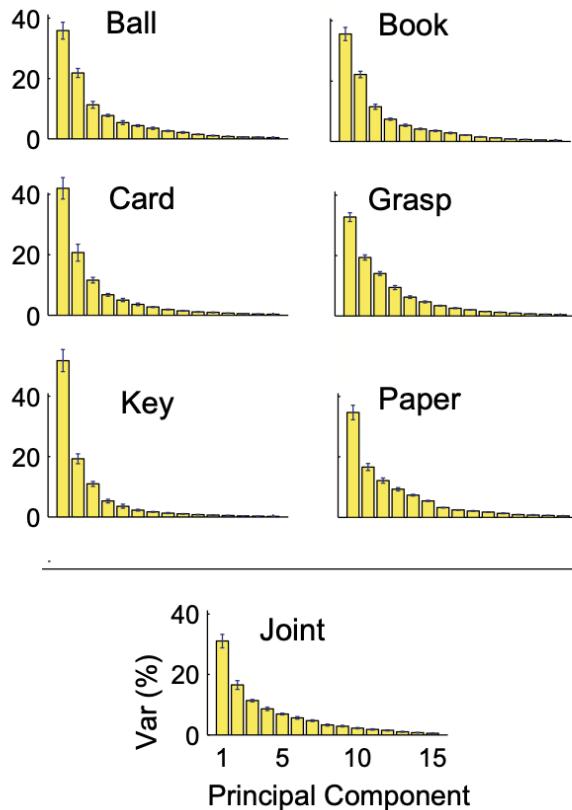
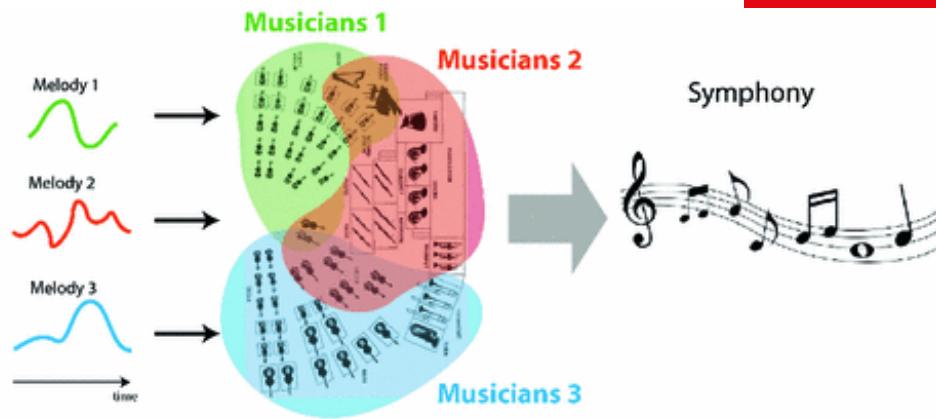
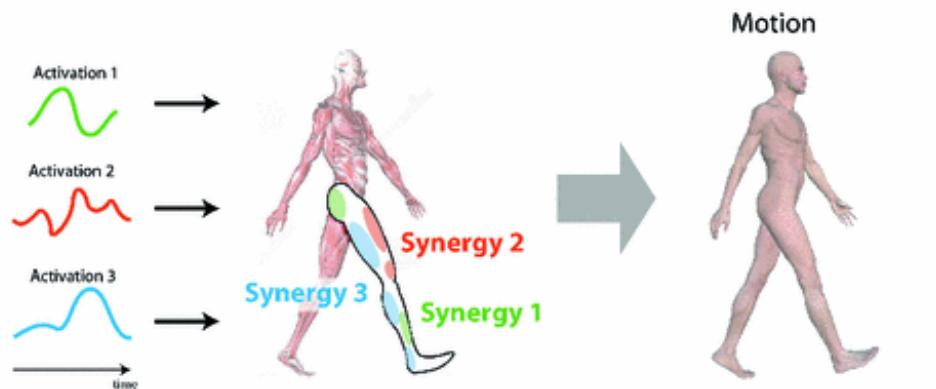
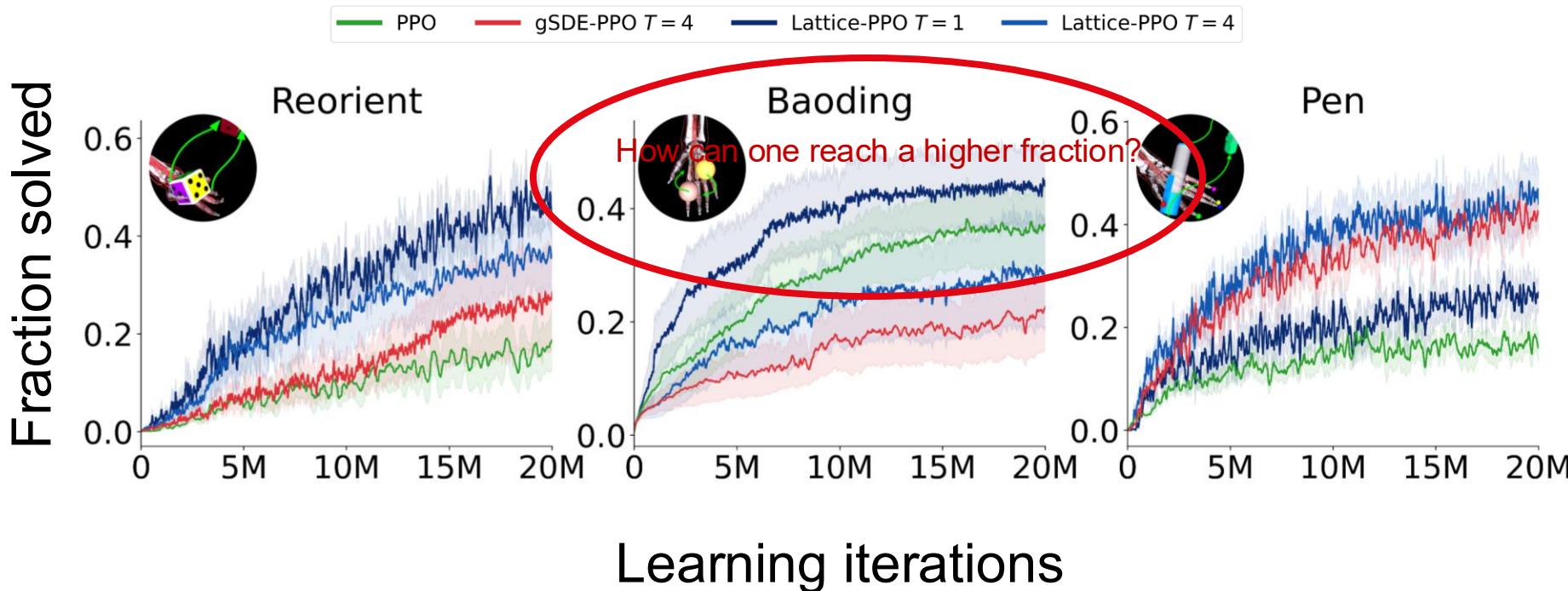


Figure 2. Variance accounted for by the first 15 principal components in each task. Results are averaged over subjects.

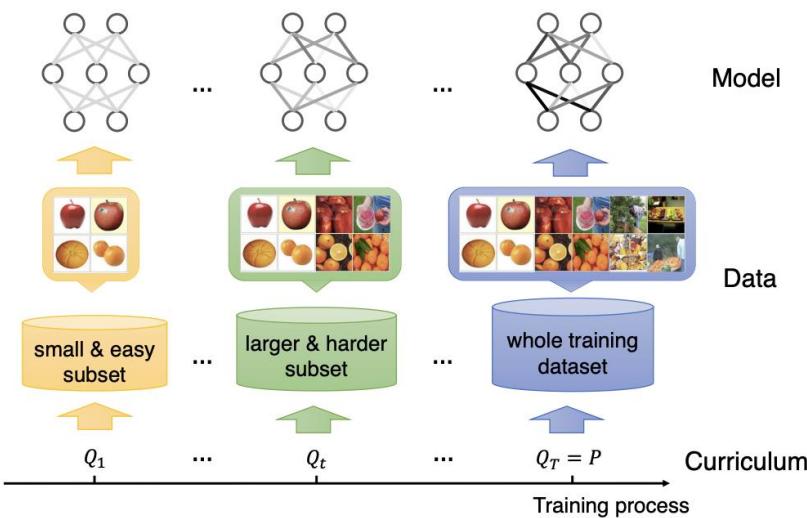


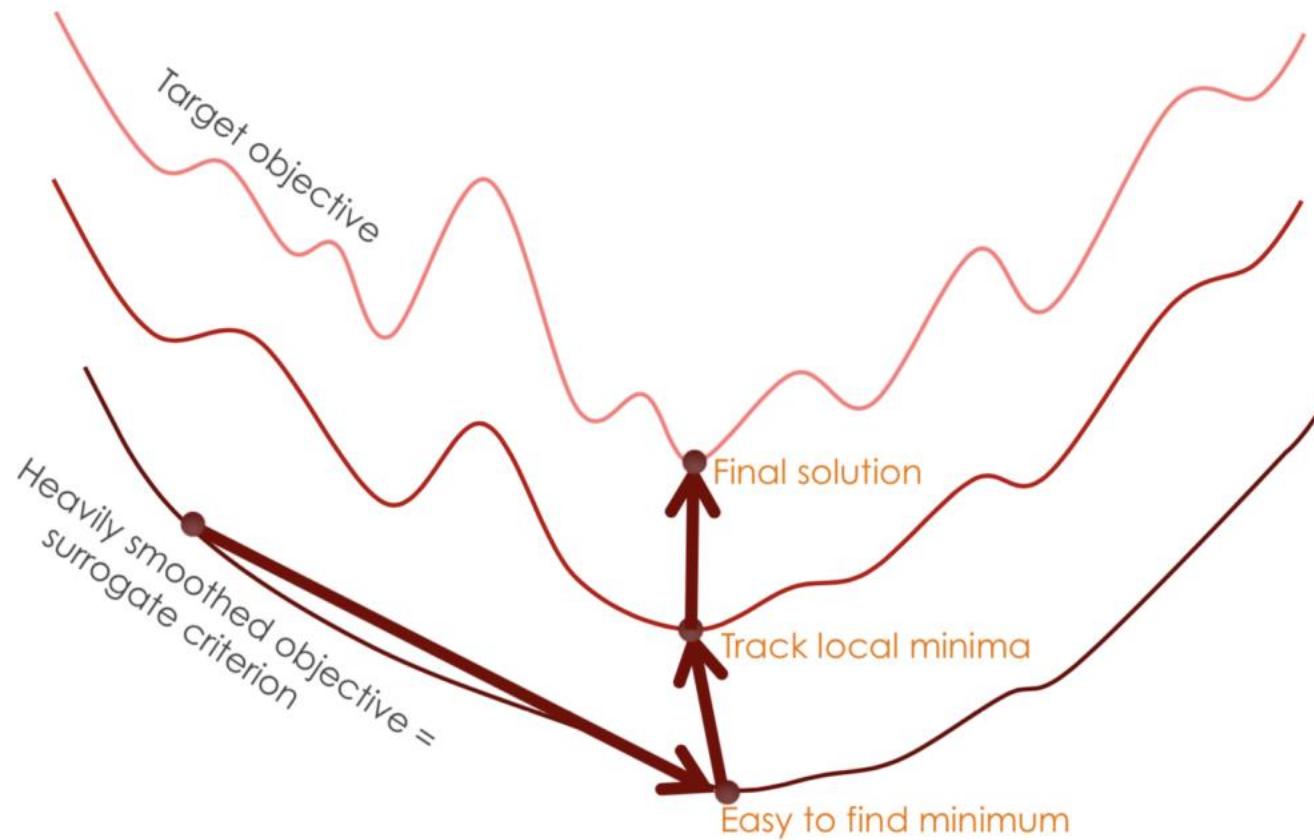
Reminder:
Muscle synergies as principle for motor control

Reminder: Object manipulation learning curves



Curriculum learning

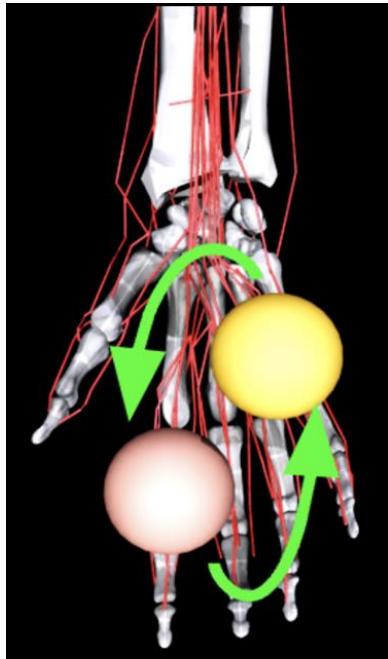
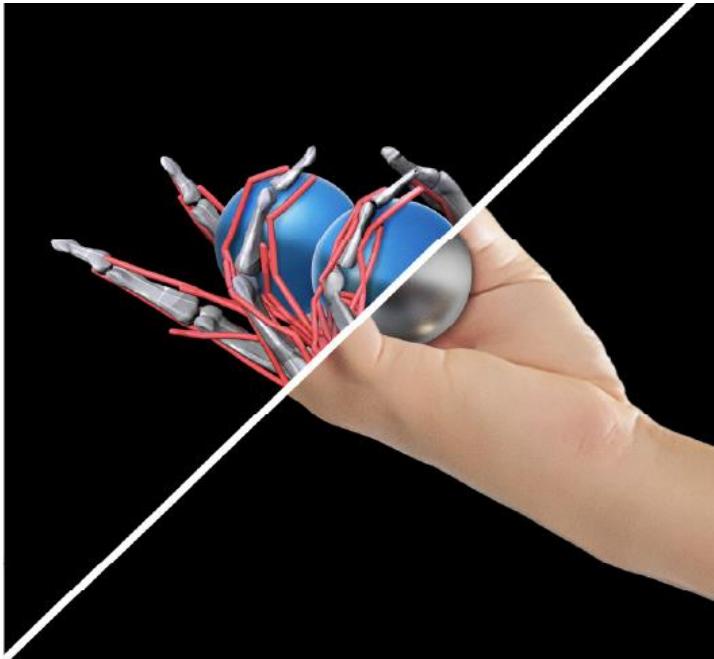




MyoChallenge: Baoding Balls

$q^{\wedge}39$

Inaugural NeurIPS Challenge 2022



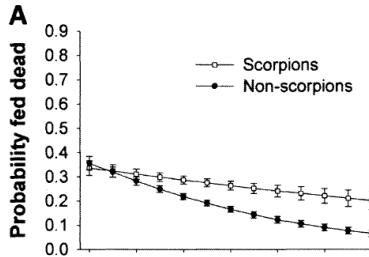
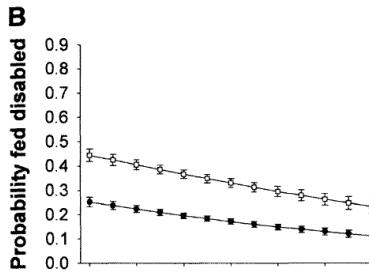
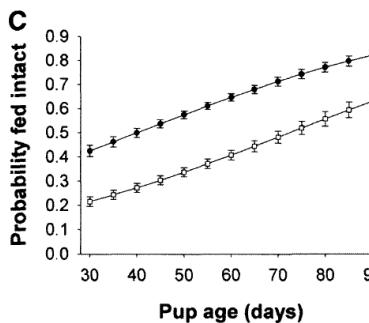
SOTA RL:

Phase 1	Phase 2
41%	0%

Curriculum learning in biology

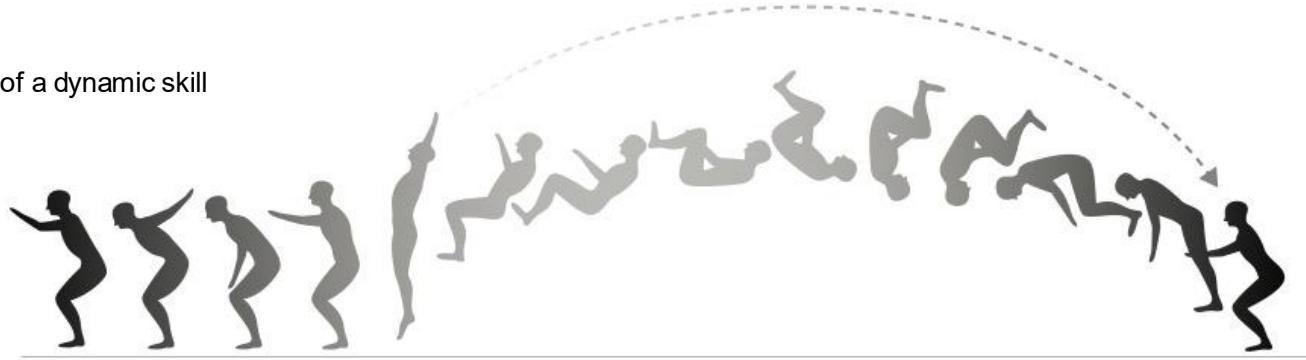
Teaching in Wild Meerkats

Alex Thornton* and Katherine McAuliffe



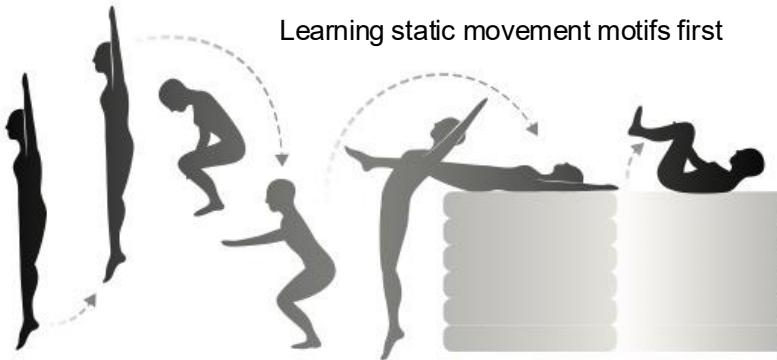
Inspiration from coaching: part-to-whole practice

States of a dynamic skill



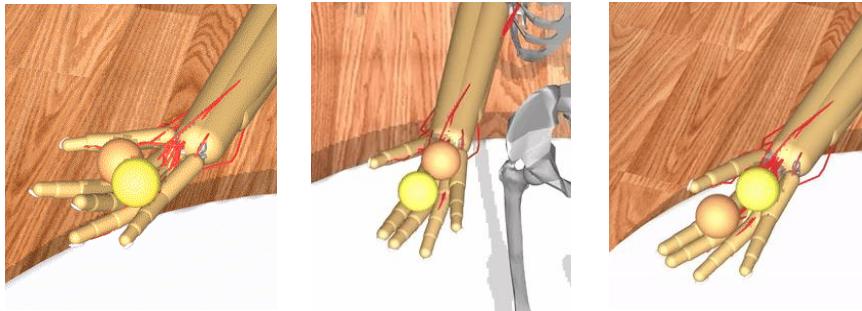
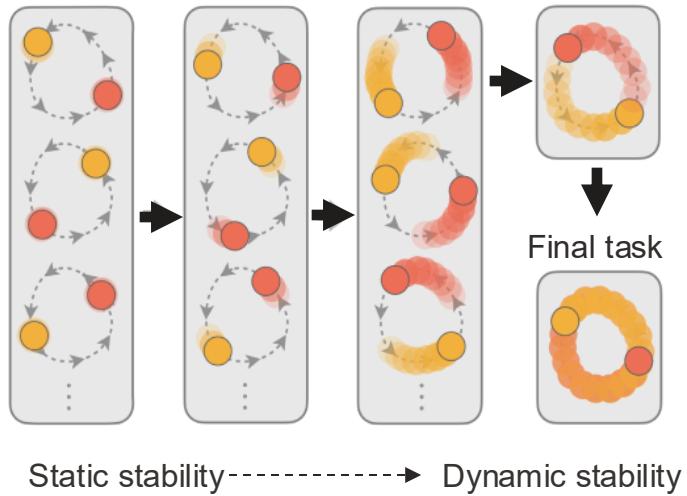
Learning static movement motifs first

Recommended strategy:



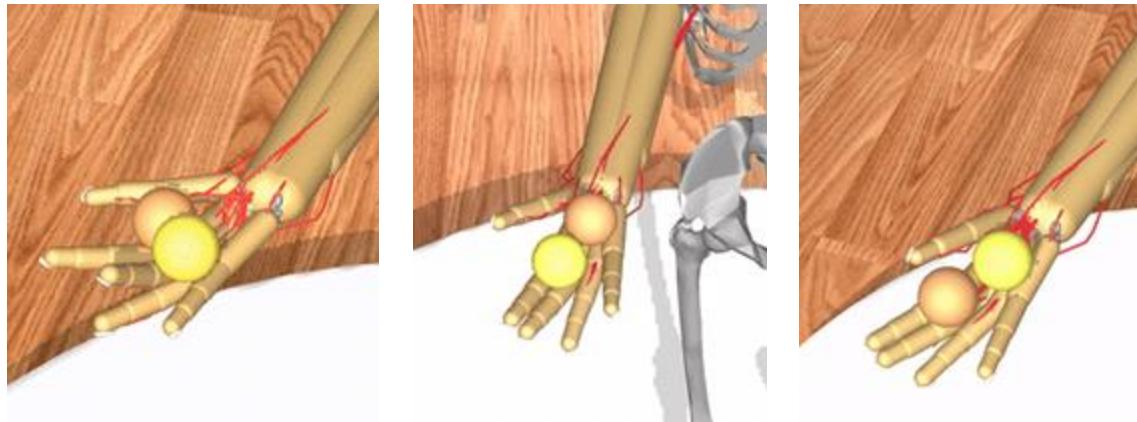
Curriculum learning

- Static to Dynamic Stability (SDS)
 - SDS creates stability at desired states *before* learning a policy that reaches them
 - A curriculum gradually transforms static stability into dynamic movement motifs

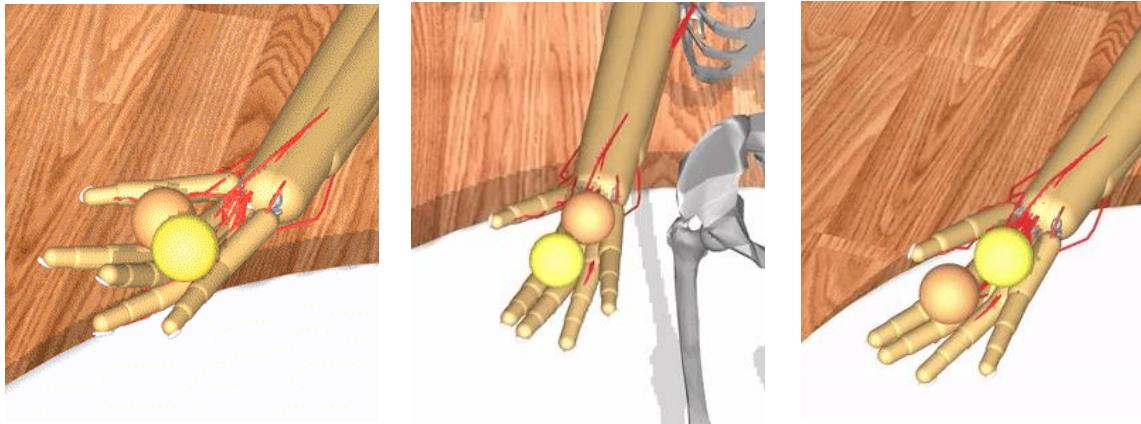


Curriculum learning

- Going *gradually* from static to dynamic stability allows to learn a complex motor skill (100% performance) for Phase I.



- Learning without a curriculum fails (41% performance)
- Going *directly* from static stability to the final task fails (42% performance)
- Standard speed curriculum fails (45% performance)

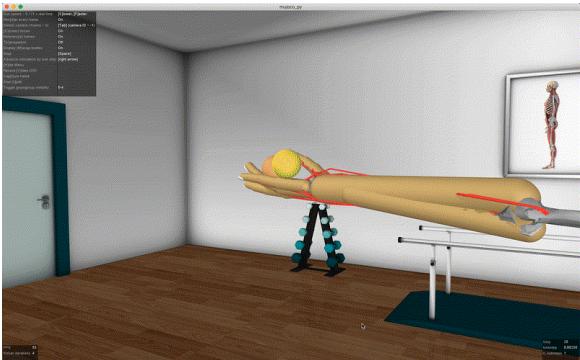
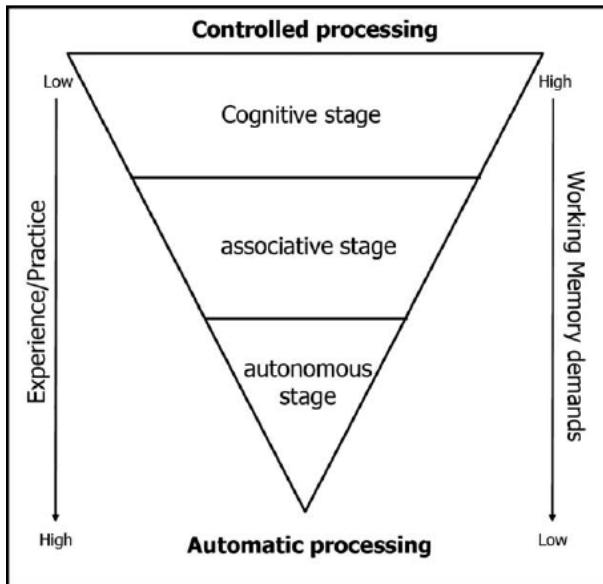


Curriculum	Phase 1	Phase 2
None	41%	0%
Location only	42%	4%
Speed only	45%	0%
SDS (ours)	100%	55%

Team	Performance
SDS (ours)	55%
AI4Muscles	41%
IARAI-JKU	15%
pkumarl	14%

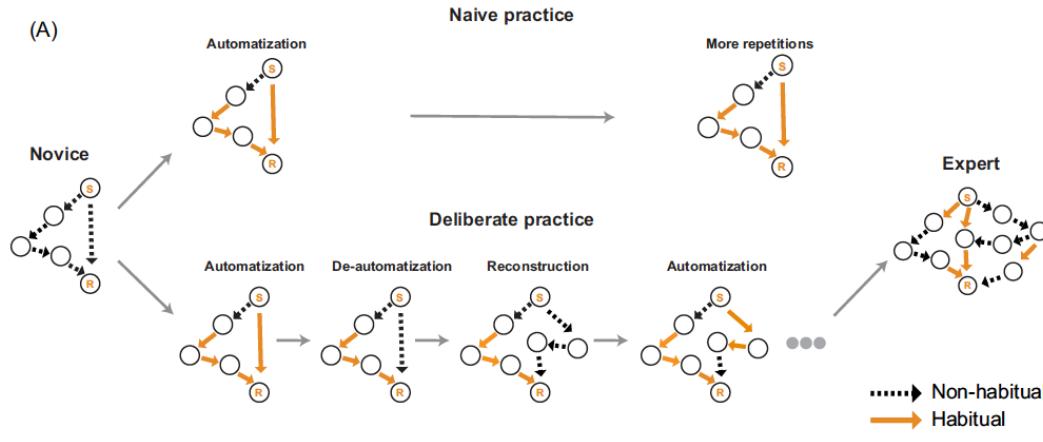
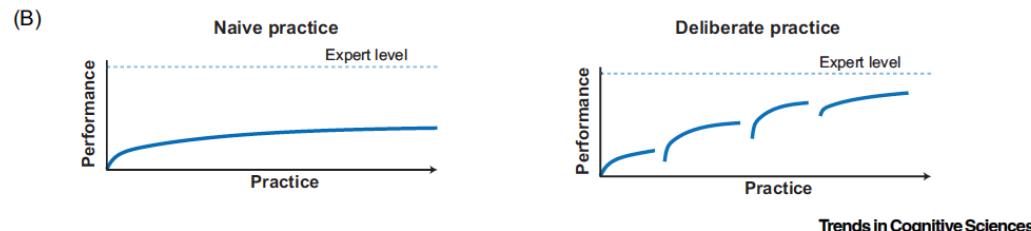
Fitts Posner's 1967 model of skill learning

Policies can get trapped in local minima



PPO, ...

Deliberate practice



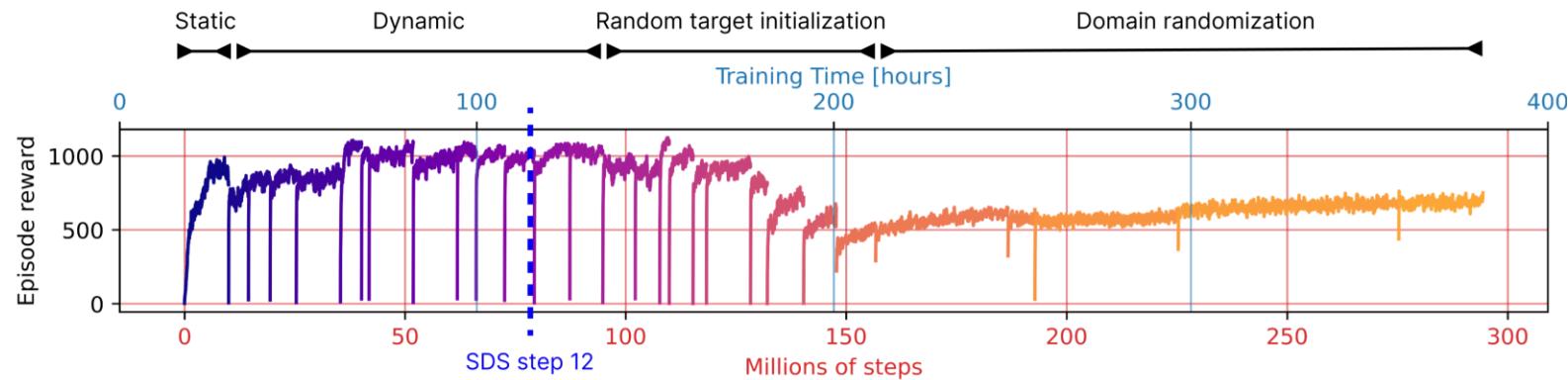
Learning curve for our policy

Sport science terminology:

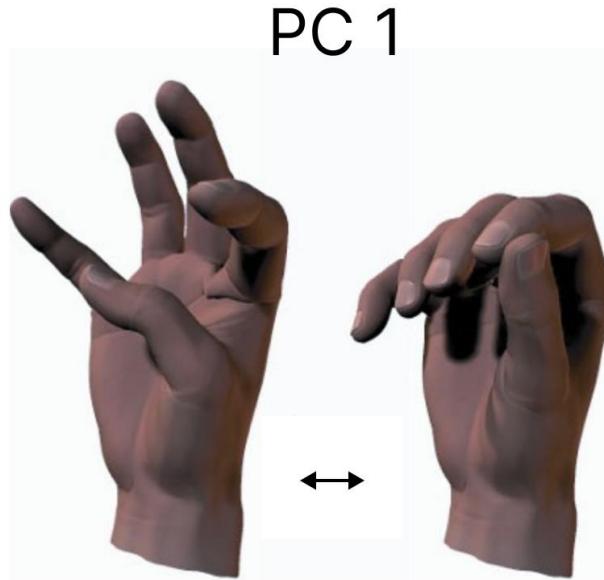
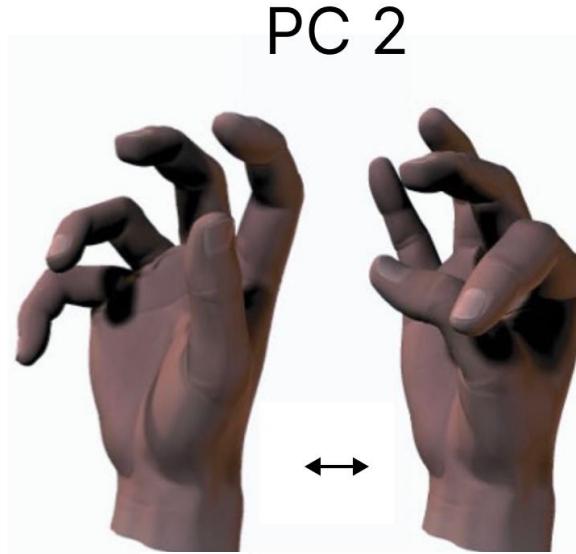
Part to whole practice

Deliberate practice

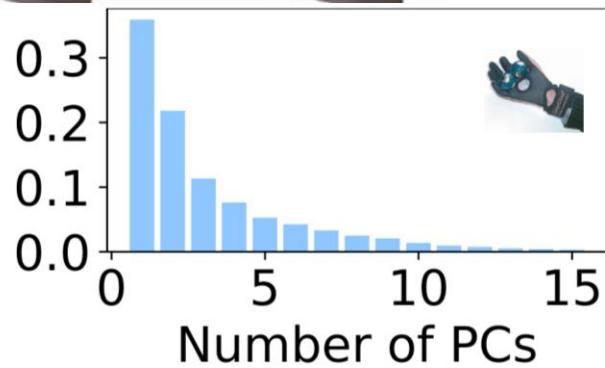
ML terminology:



How do humans achieve this task?



Human



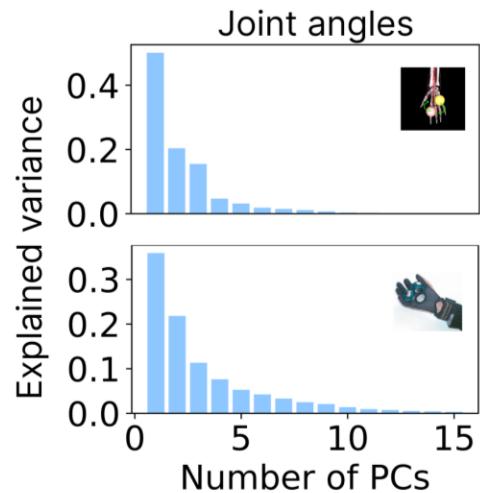
SDS also discovers a low-dimensional control space

SDS

Human

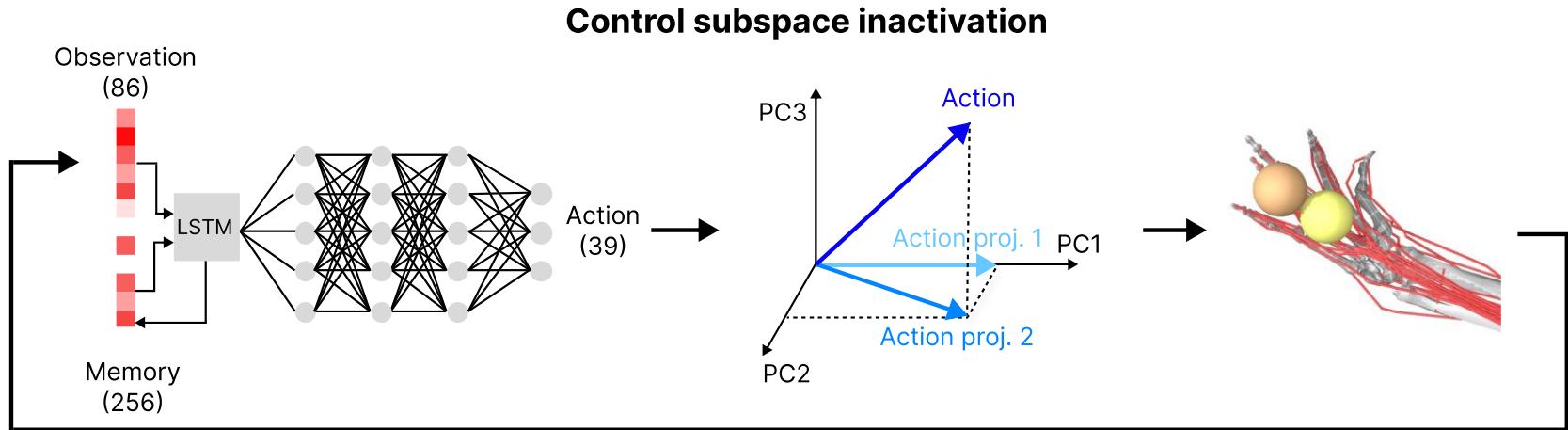
Position	
Baoding	4.5
Control	8
Muscle act.	
Baoding	12
Control	7

Muscle act.	
Baoding	12
Control	7

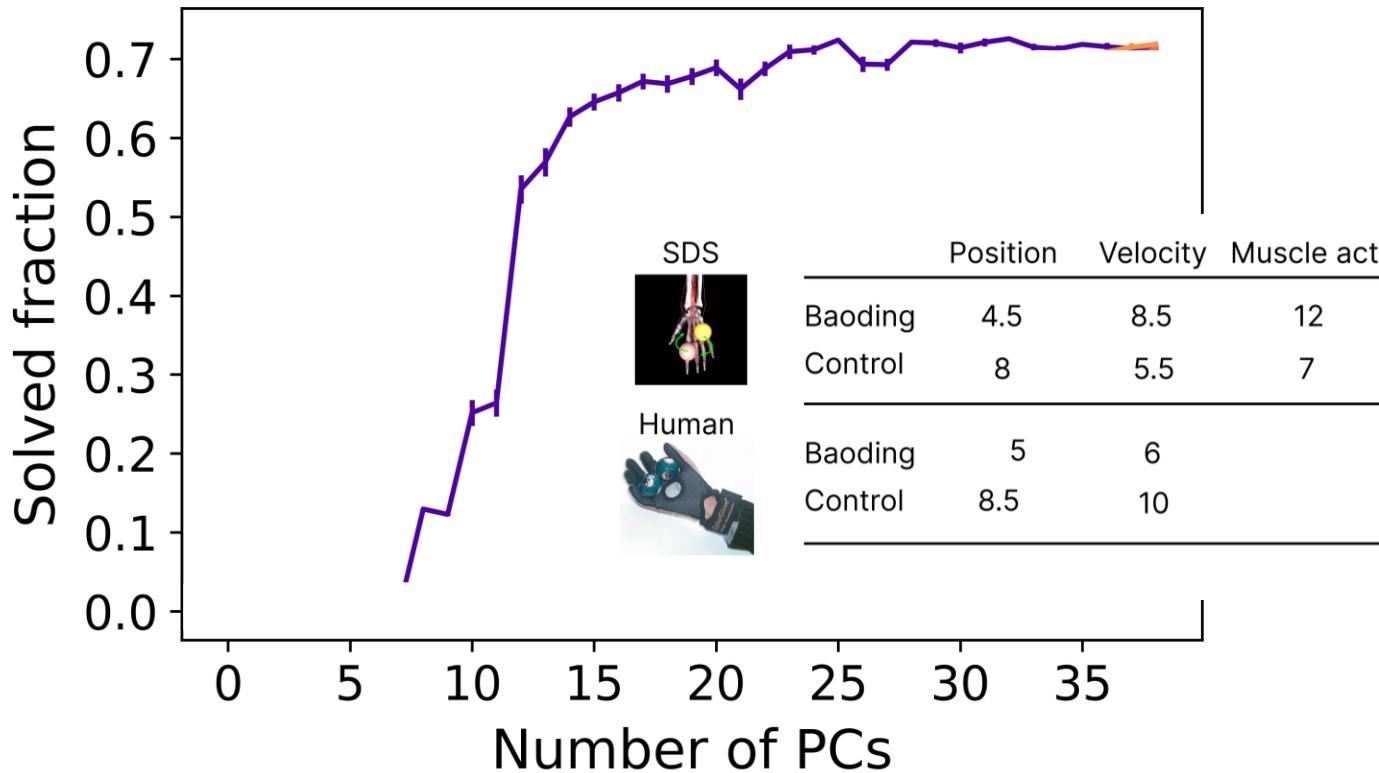


This notion of muscle/kinematic synergy is purely based on reconstruction error!

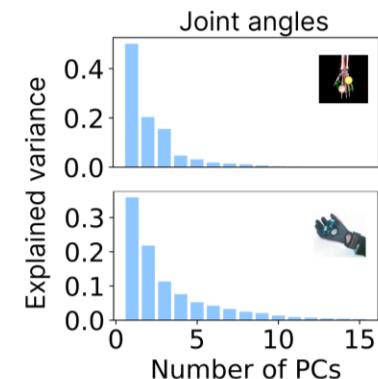
Physics engine allows causal experiments with “muscle synergies”



Signal reconstruction underestimates necessary DoF



	Position	Velocity	Muscle act.
Baoding	4.5	8.5	12
Control	8	5.5	7
<hr/>			
Baoding	5	6	
Control	8.5	10	

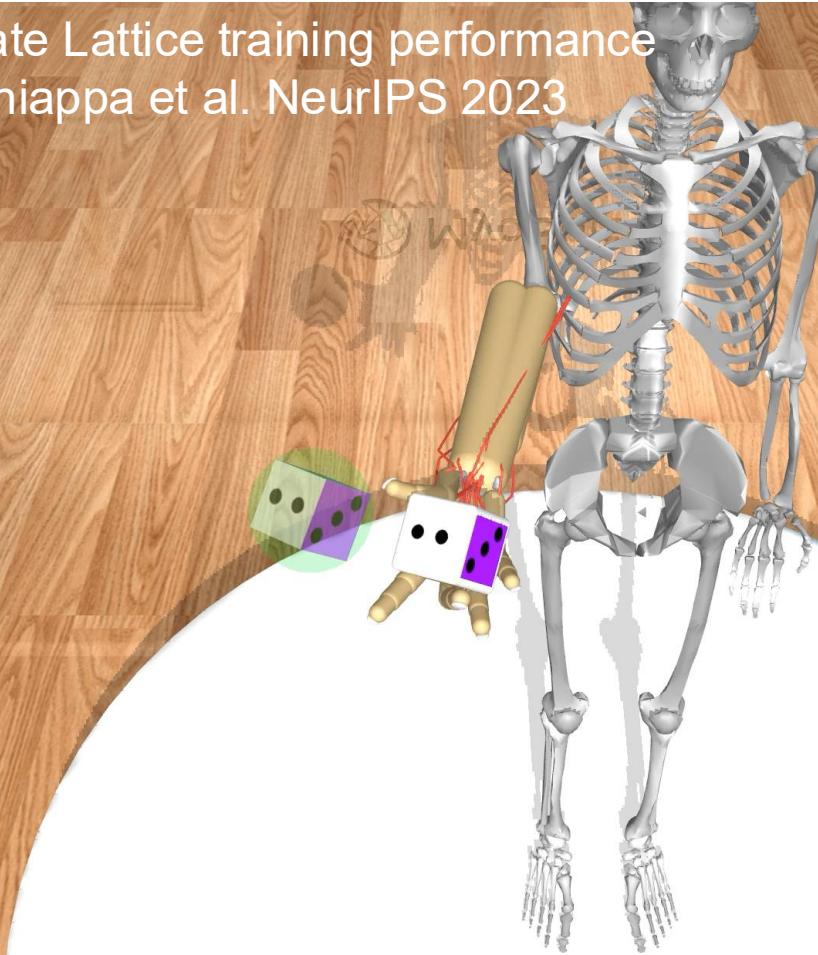


Run speed = 1.000 x real time
Ren[d]er every frame
Switch camera (#cams = 6)
[C]ontact forces
Referenc[e] frames
T[r]ansparent
Display [M]ocap bodies
Stop [Space]
Advance simulation by one step [right arrow]
[H]ide Menu
Record [V]ideo (Off)
Cap[t]ure frame
Start [i]pdb
Toggle geomgroup visibility 0-4

Late Lattice training performance

Chiappa et al. NeurIPS 2023

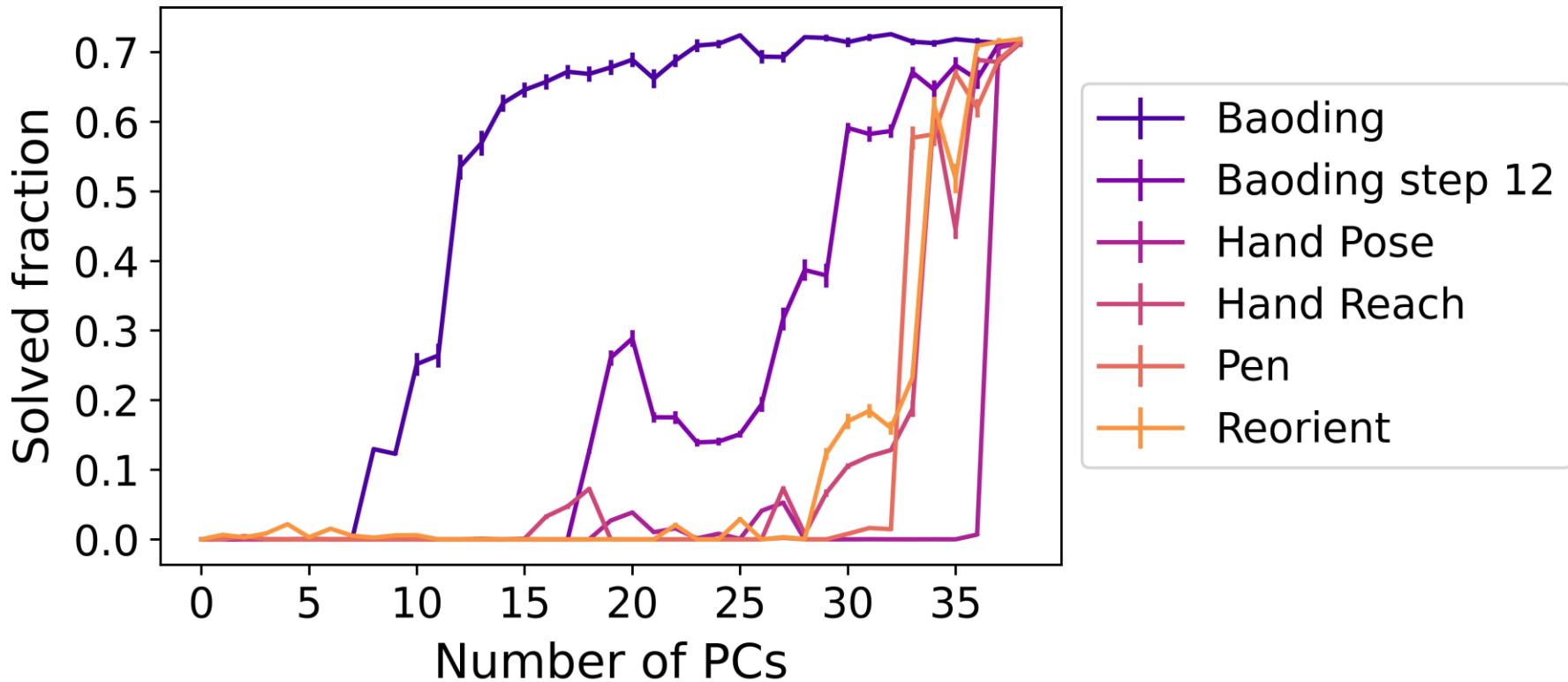
Reorient task
In MyoSuite/Mujoco



FPS 267
Solver iterations 2

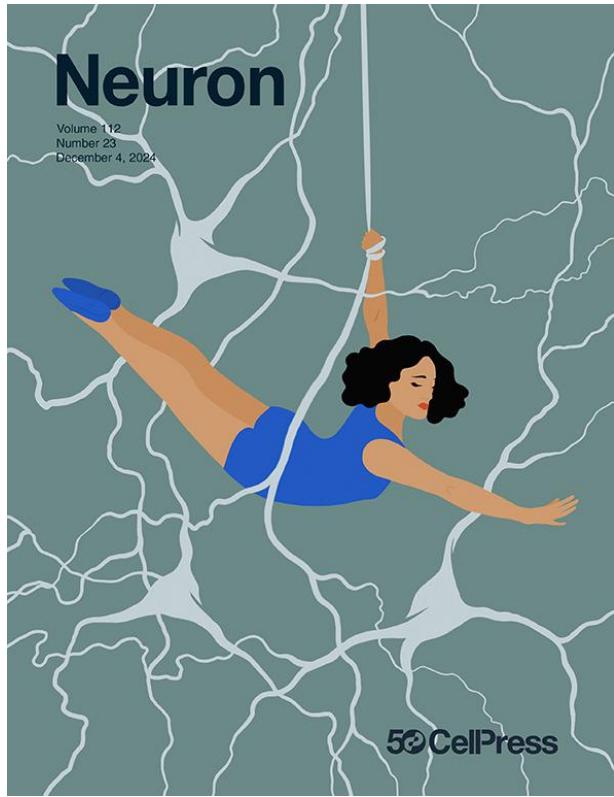
Step 530
timestep 0.00200
n_substeps 1

Control spaces are highly task-dependent & transfer poorly



Insights from analyzing SDS

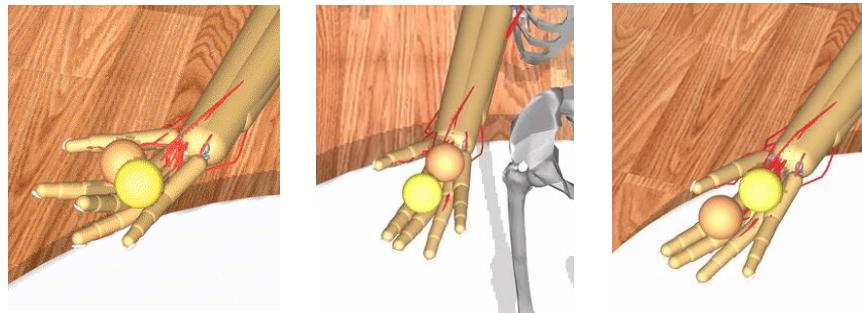
- ❑ Muscle synergies have been proposed as a key principle for motor control
- ❑ Yet, low-dimensional nature might be **underestimated with existing techniques!**
- ❑ For the hand -- learned muscle synergies are highly task-specific, and thus generalize poorly
- ❑ This suggests that low-dimensional control is an emergent property (of the task/biomechanics/distributed circuits) rather than the mechanism of control (not a simplifying strategy)
- ❑ Neural networks are ideal for taming complex biomechanics



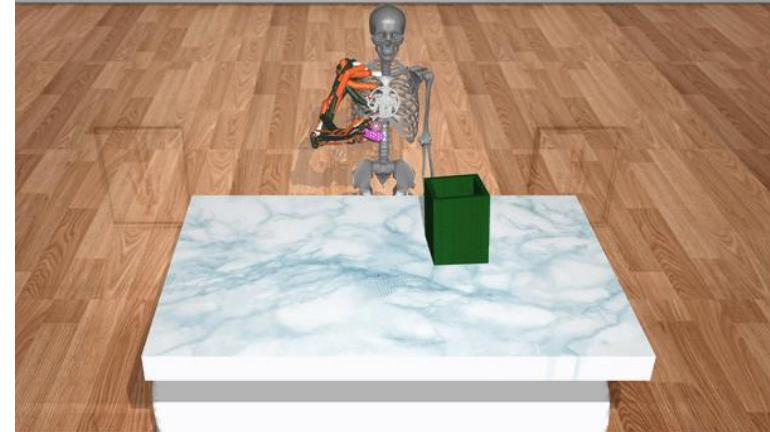
Curriculum learning

All the best solutions in the NeurIPS challenge are based on curriculum learning...

Winning solution of NeurIPS 2022 challenge



Winning solution of NeurIPS 2023 challenge



Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. *bioRxiv*

Caggiano et al. *Proceedings of the NeurIPS 2022 Competitions Track*, PMLR 220:233-250

Marin Vargas, A., Chiappa, A. S., & Mathis, A.

Solution in part based on: Lattice and Curriculum Learning:
Chiappa, Marin Vargas, Huang, Mathis *NeurIPS*. 2023

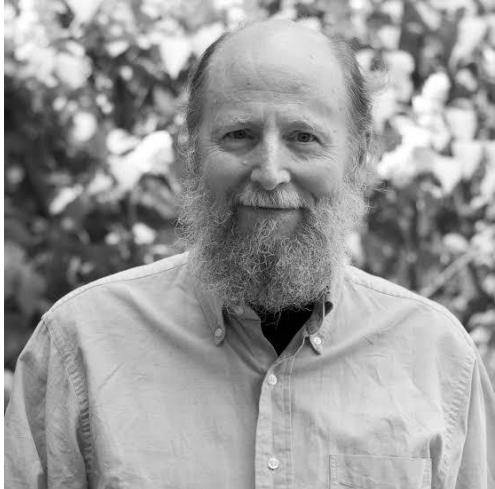
What is missing?

- Internal models
- Inductive biases (innate architecture)
- Better exploration
- Baked in reward functions (which we don't know...)
- *Using language*
- *Curriculum learning (automatic curriculum discovery?)*
- *Deliberate practice*
-

While we do not know their contributions or even the necessity of either one of those claims, I will show preliminary evidence for each to give you an idea.

There is a lot of research to be done to close this gap & figure out what actually matters...

A counter point – the bitter lesson



Richard Sutton

“The bitter lesson is based on the historical observations that 1) AI researchers have often tried to build knowledge into their agents, 2) this always helps in the short term, and is personally satisfying to the researcher, but 3) in the long run it plateaus and even inhibits further progress, and 4) breakthrough progress eventually arrives by an opposing approach based on scaling computation by **search and **learning**. *The eventual success is tinged with bitterness, and often incompletely digested, because it is success over a favored, human-centric approach.*”**

<http://www.incompleteideas.net/Incldeas/BitterLesson.html>

Take-home messages

What might explain the gap between biological and artificial control?

- Internal models
- Inductive biases (innate architecture)
- Better exploration
- Baked in reward functions (which we don't know...)
- *Using language*
- *Curriculum learning*
- *Deliberate practice*
-
- *But beware of the bitter lesson!*